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Abstract— This paper presents an EKF (extended Kalman
filter) based real-time self-attitude estimation method with a
camera DNN (deep neural network) learning landscape regu-
larities. The proposed DNN infers the gravity direction from a
single shot image. It outputs the gravity direction as a mean
vector and a covariance matrix in order to express uncertainty
of the inference. It is pre-trained with datasets collected in a
simulator. Fine-tuning with datasets collected with real sensors
is carried out after the pre-training. Data augmentation is
processed during the training in order to provide higher general
versatility. The proposed method integrates angular rates from
a gyroscope and the DNN’s outputs in an EKF. The covariance
matrix output from the DNN is used as process noise of
the EKF. Moreover, inferences with too large variance are
filtered out before processing the integration in the EKF. Static
validations are performed to show the DNN can infer the gravity
direction with uncertainty expression. Dynamic validations are
performed to show the DNN can be used in real-time estimation.
Some conventional methods are implemented for comparison.

I. INTRODUCTION

Estimating the attitude of a robot is one of the classic
problems of mobile robotics. Especially, real-time estimation
is required for real-time attitude control. The attitude is gen-
erally estimated with inertial sensors such as accelerometers
and gyroscopes. However, mobile robots have their own ac-
celeration. Moreover, on-road robots also receive pulses from
the ground, and UAVs suffer from vibration of their multi-
rotor. These need to be filtered out from the accelerometer.
On the other hand, integration of gyroscopic angular rate has
problems of drift and bias. These disturbances worsen the
accuracy of the estimation. To complement each other, these
inertial data are fused, generally [1]. Nevertheless, dealing
the disturbances with only inertial sensors is quite difficult.

To reduce the influence of these disturbances, many kinds
of LiDAR odometry, VO (visual odometry) and SLAM
(simultaneous localization and mapping) [2] have been pro-
posed. LiDAR-based methods register point clouds by ICP
[3], NDT [4], and so on. Visual methods often track fea-
tures in image sequences [5], [6]. However, these odometry
methods and SLAMs often contain accumulative error since
relative pose changes with error are summed up. In order
to correct the accumulative error, prior information such as
3D maps is often used [7]. These methods correct the error
by matching the prior information against the sensor data.
However, they work only in environments where maps are
available. Moreover, creating a map is time-consuming, and
update is also required. Some methods [8], [9] estimate the
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attitude under Manhattan world assumption. They assume
that planes or edges in the environment are orthogonal to
each other. It helps achieving drift-free estimation. However,
it is difficult for this kind of methods to avoid being affected
by objects which do not satisfy the assumption.

Deep learning has been used for attitude estimation in
recent years. In [10], IMU-based odometry by end-to-end
learning has been proposed. In [11], a deep neural network
identifies the measurement noise characteristics of IMU. In
[12], a neural network estimates angular rates from sequen-
tial images. It was trained with synthetic and real images. The
large synthetic dataset was collected in AirSim [13] which
offers visually realistic graphics. In [14], a gravity vector is
directly estimated from a single shot image. This is based
on expectation that the network can learn edge, context, and
landscape information; for example, most artificial buildings
should be built vertically, the sky should be seen when the
camera orients upper, and so on. The method does not depend
on time sequence since only a single shot image is used
for every estimation. It helps suppressing drift, noise, and
accumulative error. This method is similar to our DNN.
However, this method contains some problems. It cannot
express uncertainty of the inference; for instance, the network
outputs estimation even when the camera is all covered by
obstacles, when less features are captured, and so on. These
outputs with large error worsen estimation when it is used
in filter functions such as Kalman filter [15]. Therefore, they
should be detected and be rejected before the integration.

To address these issues above, we presented a DNN
inferring the gravity direction as mean and variance in order
to express the uncertainty of the inference [17]. The valida-
tions in the paper shows the DNN can filter out inferences
with large error by judging their variance values. However,
the method can not output any estimation while the large
variance is continuing, which means only static estimation is
considered there. Another problem is that the DNN is tested
on only simulator data in the paper. To use the DNN with real
senors for real-time estimation, this paper presents an EKF-
based method which integrates a gyroscope and the DNN
fine-tuned with real data. By integrating a gyroscope, the
method can estimate the attitude with higher frequency even
when the DNN can not infer the gravity direction. The data
augmentation method is also updated. It is more important
in this paper because collecting real data is time-consuming.
The updates from the previous study [17] are summarized
here:

• Mirroring, rotation, and the homograpy transformation
are applied to the image for augmenting data more,



Fig. 1: Screenshot of AirSim with coordinate description.
An IMU and a camera are equipped to the drone in the
simulator. The purpose of this work is estimating attitude
(roll and pitch) of the robot frame.

while the previous work applies only rotation.
• Both of synthetic and real data are applied to this

paper’s study, while the previous study was validated
on only simulator data.

• Fine-tuning after pre-training is processed to applying
the network to real data efficiently.

• The DNN inference is integrated in the EKF for real-
time estimation, while the previous study evaluated
only the DNN outputs not in real-time. The inferred
covariance matrix is used for adjusting process noise of
the EKF and for filtering out large variance.

The datasets and the source code used in this paper have
been released in open repositories (see APPENDIX).

II. DNN ESTIMATING GRAVITY DIRECTION

The proposed method trains a DNN to learn landscape
regularities for estimating a gravity vector in a robot frame.
The gravity direction is expressed as mean and variance to
consider the uncertainty of the inference.

A. Coordinate definition

A world frame is defined as a standard right-handed
coordinate system. A robot frame is defined as a right-handed
coordinate system which is fixed on the robot pose. They are
shown in Fig.1.

B. Dataset collection

Both of synthetic and real data are collected. The datasets
consist of images and corresponded gravity vectors g in the
robot frame. Fig.2 shows examples of the datasets.

The synthetic datasets are collected in AirSim [13]. Air-
Sim is a simulator for drones, cars and more, built on
Unreal Engine, which provides visually realistic graphics. An
IMU and a camera are installed to a drone in the simulator
in this work. The robot pose and weather parameters are
randomized, and a image and a gravity vector are recorded
at each pose. The range of random Z is limited as [2 m, 3
m] in this work. The ranges of random roll ϕ and pitch θ
are limited as [-30 deg, 30 deg], respectively.

The real datasets are collected with a stick with an IMU
(Xsens MTi-30) and a camera (RealSense D435) installed
on a stick (Fig.3). The stick is hand-carried, and a image
and a linear acceleration vector are recorded. They are saved

(a) Synthetic data

(b) Real data

Fig. 2: Examples of datasets. The dataset consists of images
and corresponded gravity vectors g[m/s2] in the robot frame.
The examples in (a) were collected in ‘Neighborhood’ of Air-
Sim. The robot pose and weather parameters are randomized
for creating the dataset. The examples in (b) were collected
in the campus of Meiji University.

Fig. 3: Sensors installed on stick. Images and acceleration
are recorded with this stick when it is still. The judge
whether it is still is processed by programing. Note that depth
information is not used in this study although RealSense
D435 is a RGB-D camera.

only when the stick is shaking less than 0.001 m, 0.1 deg,
and when it is at least 5 deg away from the last saved
pose. The IMU is regarded as ground truth because it has
enough accuracy (within 0.2 deg) in static according to the
specification. Learning the static IMU is valuable because
the DNN can reproduce it even in dynamic.

C. Data preprocessing

Each input data and label data are transformed, and are
augmented in each epoch of training.

• Image (input data):
Each image is flipped in 50% of probability for aug-
menting the dataset. After the flipping process, the
homography transformation is randomly applied to the
image for augmenting the pitch data. The virtual pitch
variant ∆θ is limited as [-10 deg, 10 deg]. The trans-
formed height h′, h′′ and width w′, w′′ of the image
are respectively computed as following. Fig.4 may help



Fig. 4: Homography. The pitch data of the dataset is aug-
mented by the homograpgy transformation.

understanding the equations.

d =
h
2

tan(FOVv

2 )

d′ =
d cos(FOVv

2 )

cos(FOVv

2 − |∆θ|)
, d′′ =

h
2 cos(FOVv

2 − |∆θ|)
sin(FOVv

2 )

h′ = h/2− d tan

(
FOVv

2
− |∆θ|

)
, h′′ = h− h′

w′ =
d

d′
w, w′′ =

d

d′′
w

(1)

where h, w respectively denote the height and the
width of the original image, and FOVv (< 2π) denotes
the camera’s vertical field-of-view. The image is also
randomly rotated for augmenting the roll data. The
rotation angle ∆ϕ is limited as [-10 deg, 10 deg].
The image is resized to 224 × 224. The RGB values
are normalized following mean = (0.5, 0.5, 0.5) and
std = (0.5, 0.5, 0.5). Fig.5 shows an example of the
data augmentation. Note that the training time increases
by about 4 times by adding the homography transfor-
mation according to our Python implementation. It does
not influence the inferring time since the transformation
is only applied to the training.

• Gravity vector (label data):
The gravity vector is also transformed according to the
image transformation. Since the network does not need
to learn the norm of the gravity, L2 normalization is
also applied to the vector in order to make the training
efficient.

ĝ =

{
Rotx(∆ϕ)Roty(∆θ)

g
|g| (w/o flip)

Rotx(∆ϕ)Roty(∆θ)
(gx,−gy,gz)

T

|g| (w/ flip)
(2)

where Rotx, Roty respectively denote rotation matri-
ces along x, y axes.

D. Network

The proposed DNN is shown in Fig.6. It consists of
CNN (convolutional neural network) layers and FC (fully
connected) layers. The input to the network is the resized

Fig. 5: Example of transformed image. Each input image is
randomly flipped, transformed and rotated according to ∆θ
and ∆ϕ. This example shows an image when ∆θ = ∆ϕ =
10 deg. It is also resized, and is normalized.

image, and the outputs are a mean vector of the gravity
direction and a covariance matrix. Technically, the output
of the final FC layer is (µx, µy, µz, L0, · · · , L5), and the
mean vector µ̂ and the covariance matrix Σ are computed
as Eq.3, 4, respectively. Since the lower-triangular matrix
L is required to have positive-valued diagonal entries, an
exponential function is applied to the diagonal elements.

µ̂ =
(µx, µy, µz)

T

|(µx, µy, µz)T|
(3)

Σ = LLT, L =

exp(L0) 0 0
L1 exp(L2) 0
L3 L4 exp(L5)

 (4)

It is expected that the CNN layers lean extracting features
such as edges, and the FC layers learn landscape information.
Feature module of VGG16 [18] pre-trained on ImageNet
[19] is adopted as the CNN layers of the proposed method.
Transfer learning helps deep learning to be efficient even
though the transferred network is trained on a different task
[20]. All layers, except the final output layer, use the ReLU
function [16] as activation function. All FC layers, except
the final output layer, use the 10% Dropout [21] to avoid the
over-fitting problem.

E. Loss function

By learning the distribution of the dataset and updating the
weights to maximize the probability density for the outputs,
the DNN can output mean and variance. Assuming that the
estimation follows a multivariate normal distribution, the
proposed loss function l is computed as below.

l(Θ) = −
#D∑
ι=0

ln p(ĝι|µ̂ι,Σι), d = rank(Σι)

p(ĝι|µ̂ι,Σι) =
exp(− 1

2 (ĝι − µ̂ι)
TΣ−1(ĝι − µ̂ι))√

(2π)d|Σι|

(5)

where Θ denotes the parameters of the network, #D denotes
the number of samples in the dataset, and d denotes the
dimensions of the variables, i.e. d = 3 in the proposed
method. The network minimizes the loss by updating Θ.

F. Optimization

Adam (adaptive moment estimation) [22] is used to op-
timize the parameters. For the training with the synthetic
data, the learning rates are set as lrCNN = 0.00001, lrFC =
0.0001, where lrCNN is a value for the CNN layers, lrFC is a
value for the FC layers. For the fine-tuning with the real data,
they are set smaller as lrCNN = 0.000001, lrFC = 0.00001.



Fig. 6: Proposed network architecture. It consists of CNN layers and FC layers. The input data is a resized image, and the
output data are a mean vector and a covariance matrix. They are computed with an output from the final layer as Eq.3, 4,
respectively. Log-probability of multivariate normal distribution is used as a loss function of this model.

Fig. 7: Proposed EKF architecture. Gyroscopic angular rates
are integrated in the prediction process in EKF. The DNN
outputs are integrated in the update process in EKF.

G. Uncertainty expression

In this study, η in Eq.6 is assumed to express uncertainty
of the inference. This value η is used to filter out inferences
with large variance.

η =
√
σ2
x ×

√
σ2
y ×

√
σ2
z , Σ =

 σ2
x σxy σxz

σyx σ2
y σyz

σzx σzy σ2
z

 (6)

III. EKF-BASED REAL-TIME ESTIMAION

The outputs form the DNN are integrated with gyroscopic
angular rate in EKF. The proposed EKF architecture is shown
in Fig.7. The state vector x of the proposed Kalman filter
consists of roll ϕ and pitch θ of the robot. Both of the vector
x and the covariance matrix P are computed in a prediction
process and an update process. The prediction process is
computed by integrating angular velocity from a gyroscope.
The update process is computed by observing the outputs of
the DNN.

x =
(
ϕ θ

)T
(7)

Here, t denotes the time step in the following sections.

A. Prediction process

The state vector x and the covariance matrix P are
respectively computed as following.

x̄t = f(xt−1,ut−1) = xt−1 +Rotrpy(xt−1)
ut−1

ut−1 = ωt−1∆t =

ωxt−1∆t
ωyt−1∆t
ωzt−1

∆t

 (8)

where f is a state transition model, u denotes a control
vector, ω denotes the angular velocity measured with a

gyroscope, and Rotrpy denotes a rotation matrix for angular
velocities.

P̄t = Jf t−1Pt−1Jf
T
t−1 +Qt−1, Jf t−1 =

∂f

∂x

∣∣∣∣
xt−1,ut−1

(9)
where Jf denotes f Jacobean, and Q denotes a covariance
matrix of the process noise.

B. Update process

Outputs of the DNN with large variance value η are
rejected. A threshold THη is set for judging η, and only
outputs with η < THη are observed in this EKF. The
observation vector is z as below.

z = µ̂ (10)

where µ̂ denotes a mean vector of the gravity which is output
from the DNN. The observation model is h.

h(xt) = Rotxyz(xt)

gworld

|gworld|
, gworld =

 0
0

gworld

 (11)

where gworld denotes a gravity vector in the world frame i.e.
gworld ≒ 9.8 m/s2, and Rotxyz denotes a rotation matrix for
vectors. The covariance matrix of the process noise is R.

R =

ξσ2
x σxy σxz

σyx ξσ2
y σyz

σzx σzy ξσ2
z

 (12)

where ξ denotes a hyperparameter for adjusting the variance.
The state vector x and the covariance matrix P are respec-
tively computed as following.

x̌t = xt +Kt(zt − h(xt)), P̌t = (I −KtJht)Pt

Jht =
∂h

∂x

∣∣∣∣
xt

, Kt = PtJh
T
t (JhtPtJh

T
t +Rt)

−1 (13)

where Jh denotes h Jacobean, K denotes a gain matrix, and
I denotes an identity matrix.

IV. VALIDATION

A. Static validation of DNN

The proposed DNN was trained with training datasets, and
was evaluated with test datasets.



TABLE I: Dataset list.

id# Environment #samples Usage
1 AirSim Neighborhood 10000 Training
2 1000 Test
3 SoccerField 1000 Test
4 Real Area I 1108 Fine-tuning
5 Area II 539 Test

TABLE II: Loss after 300 epochs of training.

Train (#1) Test (#2)
MLE (ours) [m/s2] -6.5002 -6.5961
Regression [m2/s4] 0.0014 0.0031

1) Method list: Definitions of methods which were used
in this validation are summarized here.

• ‘MLE (ours, all)’ denotes the proposed method de-
scribed in Section II. MLE is short for Maximum
Likelihood Estimation.

• ‘MLE (ours, selected)’ denotes a method uses the ex-
actly same network and the same parameters as ‘MLE
(ours, all)’ does, but only samples which output small
variance are used for the validation of attitude estima-
tion. It means samples with large variance are filtered
out as outliers. Assuming η in Eq.6 expresses uncer-
tainty of the inference, samples with small variance are
selected with a threshold THη . In this validation, the
threshold is set as THη = 1

#D

∑#D
ι=0 ηι, where #D is

the number of samples in the testing dataset.
• ‘Regression’ denotes a network which the final FC layer

is difference from ‘MLE (ours)’. It outputs a 3D gravity
vector without covariance. It is implemented base on the
related work [14]. L2 normalization is applied to the
final layer while ReLU is applied in [14], since ReLU
outputs only positive values. MSE (mean square error)
between the labels and outputs is used as a loss function.

• ‘Statistics’ denotes a method using the average of the
label vectors as outputs for all samples, which means∑#D

ι=0 gι is used for estimating attitudes of all samples.
Computing the error of this method is equivalent to
calculating the standard deviation of the dataset. This
method is regarded as baseline in this study.

2) Training: The datasets used in this validation are listed
in Table I. The network was trained with 10000 synthetic
samples (dataset#1) with a batch size of 200 samples for
300 epochs. Another 1000 samples (dataset#2) were used
for test. They were collected in ‘Neighborhood’ of AirSim.
The training dataset and the test dataset were not mixed. A
computer which has W-2133 CPU and Quadro GV100 GPU
with 32 GB memory was used for the training. The training
took around 43 hours with the computer.

The loss values during the training are plotted in Fig.8.
The regression model converged much faster than the MLE
model did. Table II shows the loss values after 300 epochs
of training. Note that the loss function of the MLE model
and one of the regression model are difference.

(a) MLE (ours) (b) Regression

Fig. 8: Loss plotting of training. Note that the loss function
of the MLE model and one of the regression models are dif-
ference. Therefore, their values can not be simply compared.

(a) MLE (ours) (b) Regression

Fig. 9: Loss plotting of fine-tuning. The fine-tuning made the
loss values on the real data smaller.

3) Fine-tuning: Fine-tuning with the real data was done
after the training with the synthetic data. The network was
tuned with 1108 real data samples (dataset#4) with a batch
size of 200 samples for 300 epochs. Another 539 samples
(dataset#5) were used for test. They were collected in the
campus of Meiji University. The training dataset and the test
dataset were collected in the same campus, but not in the
same area.

The loss values during the fine-tuning are plotted in Fig.9.
Table III shows the loss values after 300 epochs of the fine-
tuning. The loss value on the real dataset became smaller by
the fine-tuning. However the loss value on the test dataset
is larger than one on the training dataset. To reduce the
difference of the results between the training data and the
test data, wider variety of datasets are needed for training.

4) Attitude estimation: The roll ϕ and pitch θ of the
camera pose in the gravitational coordinate are estimated by
using µ̂.

ϕ = tan−1 µ̂y

µ̂z
, θ = tan−1 −µ̂x√

µ̂2
y + µ̂2

z

(14)

The MAE (mean absolute error) of the estimation on the
synthetic datasets is shown in Table IV. With ‘MLE (ours, se-
lected)’, 795 samples which has η < THη = 1

#D

∑#D
ι=0 ηι =

0.000120 m3/s6 were selected from 1000 test samples in
dataset#2. This threshold was also used for the other datasets.
The number of samples selected by the threshold are shown
in Table V. The MAE of the estimation on the real datasets
is shown in Table VI. With the test datasets, the error of
‘MLE (ours, selected)’ is smaller than the others.



TABLE III: Loss after 300 epochs of fine-tuning.

Train (#4) Test (#5)
MLE (ours) [m/s2] -6.2295 -5.3756
Regression [m2/s4] 0.0018 0.0059

TABLE IV: MAE of static estimation on synthetic data.

Method Angle Dataset#
[deg] 1 2 3

MLE Roll 1.206 1.982 3.535
(ours, all) Pitch 1.022 1.992 6.919

MLE Roll 1.014 1.368 1.800
(ours, selected) Pitch 0.824 1.121 2.478

Regression Roll 1.012 1.948 2.673
Pitch 0.852 1.902 3.693

Statistics Roll 15.080 15.344 15.352
Pitch 14.998 14.783 14.408

Comparing ‘MLE (ours, all)’ and ‘MLE (ours, selected)’,
filtering by THη is found valid, which means the network
expresses the uncertainty by outputting a covariance matrix.
A good example with large η and one with small η are shown
in Fig.10. Obviously, the sample in Fig.10a has much less
landscape information to estimate the gravity direction, and
the proposed network expresses the uncertainty with large η.
There is no way to detect it by the conventional regression
model.

Comparing ‘before fine-tuning’ and ‘after fine-tuning’, the
fine-tuning with the real datasets makes the error smaller. The
number of the samples for the fine-tuning is not large, but
it worked enough. It implies the pre-training with the large
synthetic dataset is valid.

Comparing with the previous study [17], the result in
this paper is better. It implies the improvement of the data
augmentation contributes to the accuracy. Data augmentation
is especially important for real data because collecting real
data is time-consuming.

B. Validation of real-time estimation in simulator

The proposed EKF-based real-time estimation was vali-
dated on synthetic flight data of a drone since ground truth
is available in the simulator.

1) Method list: Definitions of methods which were used
in this validation are summarized here.

• ‘Gyro’ denotes an estimation method integrating angu-
lar velocity from a gyroscope.

• ‘Gyro+Acc’ denotes an EKF-based estimation method
integrating angular velocity and linear acceleration from
an IMU.

• ‘Gyro+NDT’ denotes NDT SLAM [4] using 32 layers
of LiDAR. Angular velocity from a gyroscope, linear
velocity of ground truth and the NDT output are inte-
grated in an EKF.

• ‘Gyro+Regression’ denotes an EKF-based estimation
method integrating angular velocity from a gyroscope
and gravity vectors inferred by the regression network.

• ‘MLE w/o rejection’ denotes a method using the pro-
posed DNN directly without EKF. It does not filter

TABLE V: Number of selected samples by MAE (ours,
selected).

#Selected samples Dataset#
(percentage [%]) 1 2 3 4 5

Before 8388 795 368 672 225
fine-tuning (83.9) (79.5) (36.8) (60.6) (41.7)

After - - - 883 304
fine-tuning - - - (79.7) (56.4)

TABLE VI: MAE of static estimation on real data.

Method Angle Dataset#
[deg] 4 5

Before MLE Roll 2.272 3.484
fine-tuning (ours, all) Pitch 4.816 5.828

MLE Roll 1.762 1.951
(ours, selected) Pitch 4.043 4.551

Regression Roll 2.217 3.140
Pitch 4.292 5.612

After MLE Roll 1.505 2.992
fine-tuning (ours, all) Pitch 1.349 3.273

MLE Roll 1.253 1.656
(ours, selected) Pitch 1.114 2.364

Regression Roll 1.264 2.567
Pitch 1.296 3.121

Statistics Roll 15.803 14.125
Pitch 10.277 13.222

out any inferences in order to estimate the attitude
continuously.

• ‘Gyro+MLE (ours)’ denotes the proposed method de-
scribed in Section III. The hyperparameters were set as
THη = 1.2× 10−4 m3/s6 and ξ = 5× 103. They were
empirically determined based on the result in Section
IV-A.

2) Experimental conditions: Flight data of a drone was
recorded in ‘Neighborhood’ and ‘SoccerField’ of AirSim.
The sampling frequency of the IMU and the camera are
approximately 100 Hz, 12 Hz, respectively. Virtual noise
was add to the IMU’s 6-axis data. It was randomly added
following a normal distribution with a mean of 0 rad/s,
0 m/s2 and a standard deviation of 0.1 rad/s, 0.1 m/s2,
respectively. The flight courses are shown in Fig.11a, 11b.
A computer which has i7-6700 CPU and GTX1080 GPU
with 16 GB memory was used for the estimation. The DNN
inference computation takes around 0.01 - 0.02 seconds with
the computer.

3) Experimental results: The estimated attitudes in
‘Neighborhood’ are plotted in Fig.12. Table VII shows the
MAE of the estimated attitude. The MAE of ‘Gyro+MLE
(ours)’ is smaller than ones of the other methods. ‘Gyro’ had
large accumulative error. That is natural because noise was
added and the method does not have any other observation.
‘Gyro+Acc’ does not have accumulative error. However it
has error constantly, since the acceleration values of the
sensor contain own acceleration of the robot and noise. On
the other hand, the proposed method can observe the gravity
vector which does not contain them. ‘Gyro+NDT’ accumu-
lated error slower than ‘Gyro’ did by using the LiDAR, but it
could not remove the accumulation. ‘Gyro+Regression’ and
‘Gyro+MLE (ours)’ corrected the accumulative error by ob-



(a) Large η example (b) Small η example

Fig. 10: Examples with η values.

(a) Known environ-
ment

(b) Unknown envi-
ronment

(c) Real world

Fig. 11: Driving courses. The AirSim’s drone flew in ‘Neigh-
borhood’ (a) for 5 rounds for about 22 minutes, and ‘Soc-
cerField’ (b) for 3 rounds for about 6 minutes, respectively.
The real sensors were carried in the campus (c) for around
5 minutes.

serving the estimated gravity. Comparing ‘Gyro+Regression’
and ‘Gyro+MLE (ours)’, filtering out the DNN outputs with
large η is found valid. The error difference between them in
the training environment (‘Neighborhood’) is quite small. It
is considered to be because the DNNs fit the training dataset
well, which led to the environment having less uncertainty
to be filtered out. In the unknown environment (‘Soccer-
Field’), ‘Gyro+MLE (ours)’ showed stronger improvement
over ‘Gyro+Regression’. With ‘Gyro+MLE (ours)’, about 13
% and 43 % of the inferences were rejected by the threshold
THη during the flight in ‘Neighborhood’ and ‘SoccerField’,
respectively. This can avoid observing outputs with high
uncertainty. Especially, ‘MLE w/o rejection’ tended to output
large error and large variance when the attitude angles
exceeded the trained range i.e. [-30 deg, 30 deg].

C. Validation of real-time estimation in real world

To see the fine-tuned DNN can work in real world,
two types of experiments with real sensors (Fig.3) were
performed.

1) Indoor experiment with motion capture: The sensors
were hand-carried in an indoor environment of 4.5 m × 6 m
for about 23 minutes. Motion capture cameras (Vicon Vero
v1.3X) were used for measuring the ground truth. Note that
the DNN was not trained in this area.

Table VIII shows the MAE of the estimated attitude. The
proposed method suppressed accumulation of error also in
real world. In the flat indoor environment, the MAE given
by the proposed method was almost the same as that of
‘Gyro+Acc’. The acceleration measured with the IMU is not
integrated in the proposed EKF in this paper just for making
the validation simple, but it actually can be integrated, and

(a) Roll

(b) Pitch

(c) η

Fig. 12: Real-time plotting in ‘Neighborhood’. The graphs
show the last 330 seconds of the synthetic flight. ‘MLE’
tended to output large variance η when the error is large.

TABLE VII: MAE of dynamic estimation in simulator.

Method Neighborhood SoccerField
Roll Pitch Roll Pitch
[deg] [deg] [deg] [deg]

Gyro 14.524 12.562 6.424 4.679
Gyro+Acc 2.920 3.380 3.155 3.091
Gyro+NDT 7.456 6.516 4.067 2.646

Gyro+Regression 2.793 1.645 3.293 2.049
MLE w/o rejection 5.016 5.711 4.098 4.926
Gyro+MLE (ours) 2.703 1.598 2.949 1.777

it would be more stable estimation. For reference, the error
given by ‘Gyro+Acc+MLE’ was ϕerror = 2.290 deg, θerror
= 1.618 deg.

2) Outdoor experiment: The motion capture cameras
measure the attitude accurately, but the captured area is
limited. To complement that, a long distance experiment
was also performed. Detailed quantitative evaluation of the
accuracy was done in the previous section, thus this section
is just for seeing that the proposed method also be able to
work in real world.

The sensors were hand-carried for around 5 minutes in
Area II (Fig.11c) where the DNN was not trained. Since
the ground truth is not available while the sensors are being
carried, the estimated attitude at the end of carrying was
evaluated to see error accumulation. The sensors were placed
on a flat floor at the start and end of the experiment as Fig.13,
and the ground truth was assumed as ϕgt = 0 deg, θgt =
0 deg. This evaluation method is based on the related study
[14].

Table IX shows the error of the estimation at the last
pose. The proposed method suppressed accumulation of error
during the driving outdoor.



TABLE VIII: MAE of dynamic estimation in mocap area.

Roll [deg] Pitch [deg]
Gyro 6.012 5.100

Gyro+Acc 2.509 1.648
Gyro+Regression 2.840 2.764

MLE w/o rejection 4.808 7.858
Gyro+MLE (ours) 2.407 1.902

Fig. 13: Dynamic experiment. The ground truth on the flat
floor is assumed to be ϕgt = 0 deg, θgt = 0 deg.

V. CONCLUSIONS AND FUTURE WORK

The proposed method integrates a gyroscope and the
DNN for estimating self-attitude in real-time. The proposed
network estimates the gravity direction from a single shot
image. The network outputs not only the gravity vector,
but also a covariance matrix. It was trained with synthetic
data, and was fine-tuned with real data. Pre-training with the
large synthetic data and augmenting the data help making
the learning efficient. The static experiment showed the
DNN can infer the gravity direction with the uncertainty.
For dynamic estimation, angular rates from a gyroscope and
the DNN’s outputs are integrated in the EKF. The inferred
covariance matrices are used for adjusting the process noise
and for filtering out infers with large variance. The dynamic
experiments showed the proposed method can be used for
real-time estimation.

Using multiple cameras or other sensors for estimating the
attitude is our future work.

APPENDIX

• Source code and dataset. The code is implemented using
Python, C++, PyTorch API and ROS API.
https://github.com/ozakiryota/dnn_attitude_estimation
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