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EKF-based real-time self-attitude estimation with
camera DNN learning landscape regularities

Ryota Ozaki' and Yoji Kuroda'

Abstract—This paper presents an EKF (extended Kalman
filter) based real-time self-attitude estimation method with a cam-
era DNN (deep neural network) learning landscape regularities.
The proposed DNN infers the gravity direction from a single
shot image. It outputs the gravity direction as a mean vector
and a covariance matrix in order to express uncertainty of the
inference. It is pre-trained with datasets collected in a simulator.
Fine-tuning with datasets collected with real sensors is carried
out after the pre-training. Data augmentation is processed during
the training in order to provide higher general versatility. The
proposed method integrates angular rates from a gyroscope and
the DNN’s outputs in an EKF. The covariance matrix output from
the DNN is used as process noise of the EKF. Moreover, inferences
with too large variance are filtered out before processing the
integration in the EKF. Static validations are performed to
show the DNN can infer the gravity direction with uncertainty
expression. Dynamic validations are performed to show the DNN
can be used in real-time estimation. Some conventional methods
are implemented for comparison.

Index Terms—Localization, Visual Learning, Computer Vision
for Automation

I. INTRODUCTION

STIMATING the attitude of a robot is one of the

classic problems of mobile robotics. Especially, real-
time estimation is required for real-time attitude control. The
attitude is generally estimated with inertial sensors such as
accelerometers and gyroscopes. However, mobile robots have
their own acceleration. Moreover, on-road robots also receive
pulses from the ground, and UAVs suffer from vibration
of their multi-rotor. These need to be filtered out from the
accelerometer. On the other hand, integration of gyroscopic
angular rate has problems of drift and bias. These disturbances
worsen the accuracy of the estimation. To complement each
other, these inertial data are fused, generally [1]. Nevertheless,
dealing the disturbances with only inertial sensors is quite
difficult.

To reduce the influence of these disturbances, many kinds of
LiDAR odometry, VO (visual odometry) and SLAM (simul-
taneous localization and mapping) [2] have been proposed.
LiDAR-based methods register point clouds by ICP [3], NDT
[4], and so on. Visual methods often track features in image
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sequences [5], [6]. However, these odometry methods and
SLAMs often contain accumulative error since relative pose
changes with error are summed up. In order to correct the
accumulative error, prior information such as 3D maps is often
used [7]. These methods correct the error by matching the
prior information against the sensor data. However, they work
only in environments where maps are available. Moreover,
creating a map is time-consuming, and update is also required.
Some methods [8], [9] estimate the attitude under Manhattan
world assumption. They assume that planes or edges in the
environment are orthogonal to each other. It helps achieving
drift-free estimation. However, it is difficult for this kind of
methods to avoid being affected by objects which do not
satisfy the assumption.

Deep learning has been used for attitude estimation in recent
years. In [10], IMU-based odometry by end-to-end learning
has been proposed. In [11], a deep neural network identifies
the measurement noise characteristics of IMU. In [12], a neural
network estimates angular rates from sequential images. It was
trained with synthetic and real images. The large synthetic
dataset was collected in AirSim [13] which offers visually
realistic graphics. In [14], a gravity vector is directly estimated
from a single shot image. This is based on expectation that the
network can learn edge, context, and landscape information;
for example, most artificial buildings should be built vertically,
the sky should be seen when the camera orients upper, and
so on. The method does not depend on time sequence since
only a single shot image is used for every estimation. It helps
suppressing drift, noise, and accumulative error. This method
is similar to our DNN. However, this method contains some
problems. It cannot express uncertainty of the inference; for
instance, the network outputs estimation even when the camera
is all covered by obstacles, when less features are captured,
and so on. These outputs with large error worsen estimation
when it is used in filter functions such as Kalman filter [15].
Therefore, they should be detected and be rejected before the
integration.

To address these issues above, we presented a DNN infer-
ring the gravity direction as mean and variance in order to
express the uncertainty of the inference [17]. The validations
in the paper shows the DNN can filter out inferences with
large error by judging their variance values. However, the
method can not output any estimation while the large variance
is continuing, which means only static estimation is considered
there. Another problem is that the DNN is tested on only
simulator data in the paper. To use the DNN with real
senors for real-time estimation, this paper presents an EKF-
based method which integrates a gyroscope and the DNN
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Fig. 1: Screenshot of AirSim with coordinate description. An
IMU and a camera are equipped to the drone in the simulator.
The purpose of this work is estimating attitude (roll and pitch)
of the robot frame.

fine-tuned with real data. By integrating a gyroscope, the
method can estimate the attitude with higher frequency even
when the DNN can not infer the gravity direction. The data
augmentation method is also updated. It is more important in
this paper because collecting real data is time-consuming. The
updates from the previous study [17] are summarized here:

e Mirroring, rotation, and the homograpy transformation
are applied to the image for augmenting data more, while
the previous work applies only rotation.

« Both of synthetic and real data are applied to this paper’s
study, while the previous study was validated on only
simulator data.

« Fine-tuning after pre-training is processed to applying the
network to real data efficiently.

« The DNN inference is integrated in the EKF for real-time
estimation, while the previous study evaluated only the
DNN outputs not in real-time. The inferred covariance
matrix is used for adjusting process noise of the EKF
and for filtering out large variance.

The datasets and the source code used in this paper have been
released in open repositories (see APPENDIX).

II. DNN ESTIMATING GRAVITY DIRECTION

The proposed method trains a DNN to learn landscape
regularities for estimating a gravity vector in a robot frame.
The gravity direction is expressed as mean and variance to
consider the uncertainty of the inference.

A. Coordinate definition

A world frame is defined as a standard right-handed co-
ordinate system. A robot frame is defined as a right-handed
coordinate system which is fixed on the robot pose. They are
shown in Fig.1.

B. Dataset collection

Both of synthetic and real data are collected. The datasets
consist of images and corresponded gravity vectors g in the
robot frame. Fig.2 shows examples of the datasets.

The synthetic datasets are collected in AirSim [13]. AirSim
is a simulator for drones, cars and more, built on Unreal
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Fig. 2: Examples of datasets. The dataset consists of images
and corresponded gravity vectors g[m/s?] in the robot frame.
The examples in (a) were collected in ‘Neighborhood’ of Air-
Sim. The robot pose and weather parameters are randomized
for creating the dataset. The examples in (b) were collected in
the campus of Meiji University.
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Fig. 3: Sensors installed on stick. Images and acceleration are
recorded with this stick when it is still. The judge whether it is
still is processed by programing. Note that depth information
is not used in this study although RealSense D435 is a RGB-D
camera.

Engine, which provides visually realistic graphics. An IMU
and a camera are installed to a drone in the simulator in this
work. The robot pose and weather parameters are randomized,
and a image and a gravity vector are recorded at each pose.
The range of random Z is limited as [2 m, 3 m] in this work.
The ranges of random roll ¢ and pitch 6 are limited as [-30
deg, 30 deg], respectively.

The real datasets are collected with a stick with an IMU
(Xsens MTi-30) and a camera (RealSense D435) installed
on a stick (Fig.3). The stick is hand-carried, and a image
and a linear acceleration vector are recorded. They are saved
only when the stick is shaking less than 0.001 m, 0.1 deg,
and when it is at least 5 deg away from the last saved
pose. The IMU is regarded as ground truth because it has
enough accuracy (within 0.2 deg) in static according to the
specification. Learning the static IMU is valuable because the
DNN can reproduce it even in dynamic.
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C. Data preprocessing

Each input data and label data are transformed, and are
augmented in each epoch of training.

o Image (input data):
Each image is flipped in 50% of probability for augment-
ing the dataset. After the flipping process, the homogra-
phy transformation is randomly applied to the image for
augmenting the pitch data. The virtual pitch variant A6
is limited as [-10 deg, 10 deg]. The transformed height
B', " and width w’, w” of the image are respectively
computed as following. Fig.4 may help understanding the

equations.
h
d= —2-c—
tan(—F%V )
’_ dCOS(Fozivv) "o__ %COS(%\/V B |A0D
cos(FQ — |A9))’ sin(F9¥)
FOVY
h’:h/2—dtan< —|A9|), B =h-n
d d
w = 7 w’ = F T

D

where h, w respectively denote the height and the width
of the original image, and FOV" (< 27) denotes the cam-
era’s vertical field-of-view. The image is also randomly
rotated for augmenting the roll data. The rotation angle
A¢ is limited as [-10 deg, 10 deg]. The image is resized
to 224 x 224. The RGB values are normalized following
mean = (0.5,0.5,0.5) and std = (0.5,0.5,0.5). Fig.5
shows an example of the data augmentation. Note that
the training time increases by about 4 times by adding
the homography transformation according to our Python
implementation. It does not influence the inferring time
since the transformation is only applied to the training.
o Gravity vector (label data):

The gravity vector is also transformed according to the
image transformation. Since the network does not need
to learn the norm of the gravity, L2 normalization is
also applied to the vector in order to make the training

efficient.
4= {Rot’(‘A@Rot%’Ae) o i (w/o flip) @
Rot’((Aqs)Rot%'Ae) 7(9”“7'9;"92) (w/ flip)

where Rot*, RotY respectively denote rotation matrices
along z, y axes.

D. Network

The proposed DNN is shown in Fig.6. It consists of CNN
(convolutional neural network) layers and FC (fully connected)
layers. The input to the network is the resized image, and
the outputs are a mean vector of the gravity direction and a
covariance matrix. Technically, the output of the final FC layer
is (fg, fy, 2, Lo, - - -, Ls), and the mean vector fi and the co-
variance matrix ¥ are computed as Eq.3, 4, respectively. Since

Fig. 4: Homography. The pitch data of the dataset is aug-
mented by the homograpgy transformation.
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Fig. 5: Example of transformed image. Each input image is
randomly flipped, transformed and rotated according to A#
and A¢. This example shows an image when Af = A¢p =
10 deg. It is also resized, and is normalized.

the lower-triangular matrix L is required to have positive-
valued diagonal entries, an exponential function is applied to
the diagonal elements.

~ (:u’w7 My7 :uZ)T
p=_—"r (3)
‘(,U:cvﬂyuuz)T|
exp(Lo) 0 0
S=LL" L= Ly exp(Ls) 0 “4)
L3 L4 exp(L5)

It is expected that the CNN layers lean extracting features
such as edges, and the FC layers learn landscape information.
Feature module of VGG16 [18] pre-trained on ImageNet [19]
is adopted as the CNN layers of the proposed method. Transfer
learning helps deep learning to be efficient even though the
transferred network is trained on a different task [20]. All
layers, except the final output layer, use the ReLLU function
[16] as activation function. All FC layers, except the final
output layer, use the 10% Dropout [21] to avoid the over-
fitting problem.

E. Loss function

By learning the distribution of the dataset and updating the
weights to maximize the probability density for the outputs,
the DNN can output mean and variance. Assuming that
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Fig. 6: Proposed network architecture. It consists of CNN layers and FC layers. The input data is a resized image, and the
output data are a mean vector and a covariance matrix. They are computed with an output from the final layer as Eq.3, 4,
respectively. Log-probability of multivariate normal distribution is used as a loss function of this model.

the estimation follows a multivariate normal distribution, the
proposed loss function [ is computed as below.

#D
=Y Inp(g.li, =),  d=rank(S,)
(1 — TS G )
X -5 v L L

p(.ét‘ﬂw Eb) = P 2 “ g =

(2

where © denotes the parameters of the network, #D denotes
the number of samples in the dataset, and d denotes the
dimensions of the variables, i.e. d = 3 in the proposed method.
The network minimizes the loss by updating ©.

)%

FE. Optimization

Adam (adaptive moment estimation) [22] is used to optimize
the parameters. For the training with the synthetic data, the
learning rates are set as lrcnny = 0.00001, Irpc = 0.0001,
where Irconn is a value for the CNN layers, Irpc is a value
for the FC layers. For the fine-tuning with the real data, they
are set smaller as [rcnn = 0.000001, Irpc = 0.00001.

G. Uncertainty expression

In this study, n in Eq.6 is assumed to express uncertainty
of the inference. This value n is used to filter out inferences
with large variance.

2
03 Opy Ous
— /o2 x ]2 2 — 2
n=\03xJopx\oz, X=|oy oy Uy2z (6)
Owp Osy O

ITII. EKF-BASED REAL-TIME ESTIMAION

The outputs form the DNN are integrated with gyroscopic
angular rate in EKF. The proposed EKF architecture is shown
in Fig.7. The state vector x of the proposed Kalman filter
consists of roll ¢ and pitch 6 of the robot. Both of the vector
a and the covariance matrix P are computed in a prediction
process and an update process. The prediction process is
computed by integrating angular velocity from a gyroscope.
The update process is computed by observing the outputs of
the DNN.

z=(¢ 6)

Here, ¢ denotes the time step in the following sections.

)
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Lo Attitude ¢, 6
Angular velocity @ EKF > Output

Fig. 7: Proposed EKF architecture. Gyroscopic angular rates
are integrated in the prediction process in EKF. The DNN
outputs are integrated in the update process in EKF.

A. Prediction process

The state vector « and the covariance matrix P are respec-
tively computed as following.

f(mt Lug—1) — Lt—1 +R0t( _HUt-1
th,lAt (8)
Ui = w1 AL = | wy, At
Wy, At

where f is a state transition model, u denotes a control vector,
w denotes the angular velocity measured with a gyroscope, and
Rot™ denotes a rotation matrix for angular velocities.

of

15t = th_lf’t—l']f;r_l + Qt—17 %

Jrp 1=

Tt—1,Ut—1

where Jy denotes f Jacobean, and @ denotes a covariance
matrix of the process noise.

B. Update process

Outputs of the DNN with large variance value 7 are rejected.

A threshold TH,, is set for judging 7, and only outputs with

n < TH,, are observed in this EKF. The observation vector is
z as below.

z=f (10)

where fi denotes a mean vector of the gravity which is output
from the DNN. The observation model is h.

0
hwy = Rotys I g na={ 0 (11)
|gwor1d|
Gworld

where gworia denotes a gravity vector in the world frame i.e.
Jworld = 9.8 m/s?, and Rot™* denotes a rotation matrix for
vectors. The covariance matrix of the process noise is R.

fgg Ogzy Ogz
R= |0y 505 ory; (12)
Oz Ouy &0
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TABLE I: Dataset list.

id# | Environment [ #samples [ Usage

1 AirSim | Neighborhood 10000 Training
2 1000 Test

3 SoccerField 1000 Test

4 Real Area | 1108 Fine-tuning
5 Area II 539 Test

where £ denotes a hyperparameter for adjusting the variance.
The state vector  and the covariance matrix P are respec-
tively computed as following.

T =z + Ki(zt — hiz,))s P, =(I-KJn)P,
oh

13
Tt = 13)

ox| '’

Tt

K, = P.J,} (Jn,PoJn! + R,

where J}, denotes h Jacobean, K denotes a gain matrix, and
I denotes an identity matrix.

IV. VALIDATION
A. Static validation of DNN

The proposed DNN was trained with training datasets, and
was evaluated with test datasets.

1) Method list: Definitions of methods which were used in
this validation are summarized here.

e ‘MLE (ours, all)’ denotes the proposed method described
in Section II. MLE is short for Maximum Likelihood
Estimation.

e ‘MLE (ours, selected)’ denotes a method uses the exactly
same network and the same parameters as ‘MLE (ours,
all)” does, but only samples which output small variance
are used for the validation of attitude estimation. It
means samples with large variance are filtered out as
outliers. Assuming 1 in Eq.6 expresses uncertainty of the
inference, samples with small variance are selected with
a threshold TH,,. In this validation, the threshold is set
as TH, = #% Zi% 1., where #D is the number of
samples in the testing dataset.

o ‘Regression’ denotes a network which the final FC layer
is difference from ‘MLE (ours)’. It outputs a 3D gravity
vector without covariance. It is implemented base on the
related work [14]. L2 normalization is applied to the final
layer while ReLU is applied in [14], since ReL.U outputs
only positive values. MSE (mean square error) between
the labels and outputs is used as a loss function.

o ‘Statistics’ denotes a method using the average of the
label vectors as outputs for all samples, which means
Zi% g, is used for estimating attitudes of all samples.
Computing the error of this method is equivalent to
calculating the standard deviation of the dataset. This
method is regarded as baseline in this study.

2) Training: The datasets used in this validation are listed
in Table I. The network was trained with 10000 synthetic
samples (dataset#1) with a batch size of 200 samples for
300 epochs. Another 1000 samples (dataset#2) were used
for test. They were collected in ‘Neighborhood’ of AirSim.
The training dataset and the test dataset were not mixed. A
computer which has W-2133 CPU and Quadro GV100 GPU

aining
Validation Validation

Loss (m/s™2]
Loss [m~2/5~4]

[ 50 100 150 200 250 300 [ 50 100 150 200 250 300
Epoch Epoch

(a) MLE (ours) (b) Regression

Fig. 8: Loss plotting of training. Note that the loss function
of the MLE model and one of the regression models are
difference. Therefore, their values can not be simply compared.

TABLE II: Loss after 300 epochs of training.

[[ Train (#1)  Test (#2)
MLE (ours) [m/s?] -6.5002 -6.5961
Regression [m?/s?] 0.0014 0.0031

with 32 GB memory was used for the training. The training
took around 43 hours with the computer.

The loss values during the training are plotted in Fig.8. The
regression model converged much faster than the MLE model
did. Table II shows the loss values after 300 epochs of training.
Note that the loss function of the MLE model and one of the
regression model are difference.

3) Fine-tuning: Fine-tuning with the real data was done
after the training with the synthetic data. The network was
tuned with 1108 real data samples (dataset#4) with a batch
size of 200 samples for 300 epochs. Another 539 samples
(dataset#5) were used for test. They were collected in the
campus of Meiji University. The training dataset and the test
dataset were collected in the same campus, but not in the same
area.

The loss values during the fine-tuning are plotted in Fig.9.
Table III shows the loss values after 300 epochs of the fine-
tuning. The loss value on the real dataset became smaller by
the fine-tuning. However the loss value on the test dataset is
larger than one on the training dataset. To reduce the difference
of the results between the training data and the test data, wider
variety of datasets are needed for training.

4) Attitude estimation: The roll ¢ and pitch 6 of the camera
pose in the gravitational coordinate are estimated by using fi.

¢ = tan"! @, f = tan~! — 2

fre NCEE
The MAE (mean absolute error) of the estimation on the
synthetic datasets is shown in Table IV. With ‘MLE (ours,
selected)’, 795 samples which has n < TH,, = #% ZtDo =
0.000120 m3/s® were selected from 1000 test samples in
dataset#2. This threshold was also used for the other datasets.
The number of samples selected by the threshold are shown
in Table V. The MAE of the estimation on the real datasets is
shown in Table VI. With the test datasets, the error of ‘MLE
(ours, selected)’ is smaller than the others.

Comparing ‘MLE (ours, all)’ and ‘MLE (ours, selected)’,
filtering by TH,, is found valid, which means the network

(14)
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Fig. 9: Loss plotting of fine-tuning. The fine-tuning made the
loss values on the real data smaller.

TABLE III: Loss after 300 epochs of fine-tuning.

[[ Train (#4)  Test (#5)
MLE (ours) [m/s?] -6.2295 -5.3756
Regression [mZ/s%] 0.0018 0.0059

expresses the uncertainty by outputting a covariance matrix.
A good example with large 1 and one with small 5 are shown
in Fig.10. Obviously, the sample in Fig.10a has much less
landscape information to estimate the gravity direction, and
the proposed network expresses the uncertainty with large 7.
There is no way to detect it by the conventional regression
model.

Comparing ‘before fine-tuning’ and ‘after fine-tuning’, the
fine-tuning with the real datasets makes the error smaller. The
number of the samples for the fine-tuning is not large, but
it worked enough. It implies the pre-training with the large
synthetic dataset is valid.

Comparing with the previous study [17], the result in
this paper is better. It implies the improvement of the data
augmentation contributes to the accuracy. Data augmentation
is especially important for real data because collecting real
data is time-consuming.

B. Validation of real-time estimation in simulator

The proposed EKF-based real-time estimation was validated
on synthetic flight data of a drone since ground truth is
available in the simulator.

1) Method list: Definitions of methods which were used in
this validation are summarized here.

e ‘Gyro’ denotes an estimation method integrating angular
velocity from a gyroscope.

¢ ‘Gyro+Acc’ denotes an EKF-based estimation method
integrating angular velocity and linear acceleration from
an IMU.

e ‘Gyro+NDT’ denotes NDT SLAM [4] using 32 layers of
LiDAR. Angular velocity from a gyroscope, linear veloc-
ity of ground truth and the NDT output are integrated in
an EKF.

o ‘Gyro+Regression’ denotes an EKF-based estimation
method integrating angular velocity from a gyroscope and
gravity vectors inferred by the regression network.

+ ‘MLE w/o rejection’ denotes a method using the proposed
DNN directly without EKF. It does not filter out any
inferences in order to estimate the attitude continuously.

TABLE IV: MAE of static estimation on synthetic data.

Method Angle Dataset#

[deg] 1 2 3
MLE Roll 1.206 1.982 3.535
(ours, all) Pitch 1.022 1.992 6.919
MLE Roll 1.014 1.368 1.800
(ours, selected) Pitch 0.824 1.121 2.478
Regression Roll 1.012 1.948 2.673
Pitch 0.852 1.902 3.693
Statistics Roll 15.080 15344  15.352
Pitch 14998 14783 14.408

TABLE V: Number of selected samples by MAE (ours,
selected).

#Selected samples Dataset#
(percentage [%]) 1 2 3 4 5
Before 8388 795 368 672 225
fine-tuning 83.9) (79.5) (36.8) (60.6) (41.7)
After - - - 883 304
fine-tuning - - - (79.7)  (56.4)

e ‘Gyro+MLE (ours)’ denotes the proposed method de-
scribed in Section III. The hyperparameters were set as
TH, = 1.2 x 1074 m?/s® and £ = 5 x 103. They were
empirically determined based on the result in Section
IV-A.

2) Experimental conditions: Flight data of a drone was
recorded in ‘Neighborhood’ and ‘SoccerField’ of AirSim.
The sampling frequency of the IMU and the camera are
approximately 100 Hz, 12 Hz, respectively. Virtual noise was
add to the IMU’s 6-axis data. It was randomly added following
a normal distribution with a mean of 0 rad/s, 0 m/s? and a
standard deviation of 0.1 rad/s, 0.1 m/s?, respectively. The
flight courses are shown in Fig.11a, 11b. A computer which
has 17-6700 CPU and GTX1080 GPU with 16 GB memory
was used for the estimation. The DNN inference computation
takes around 0.01 - 0.02 seconds with the computer.

3) Experimental results: The estimated attitudes in ‘Neigh-
borhood’ are plotted in Fig.12. Table VII shows the MAE of
the estimated attitude. The MAE of ‘Gyro+MLE (ours)’ is
smaller than ones of the other methods. ‘Gyro’ had large accu-
mulative error. That is natural because noise was added and the
method does not have any other observation. ‘Gyro+Acc’ does
not have accumulative error. However it has error constantly,
since the acceleration values of the sensor contain own accel-
eration of the robot and noise. On the other hand, the proposed
method can observe the gravity vector which does not contain
them. ‘Gyro+NDT’ accumulated error slower than ‘Gyro’ did
by using the LiDAR, but it could not remove the accumu-
lation. ‘Gyro+Regression’ and ‘Gyro+MLE (ours)’ corrected
the accumulative error by observing the estimated gravity.
Comparing ‘Gyro+Regression’ and ‘Gyro+MLE (ours)’, fil-
tering out the DNN outputs with large 1 is found valid.
The error difference between them in the training environ-
ment (‘Neighborhood’) is quite small. It is considered to
be because the DNNs fit the training dataset well, which
led to the environment having less uncertainty to be filtered
out. In the unknown environment (‘SoccerField’), ‘Gyro+MLE
(ours)’ showed stronger improvement over ‘Gyro+Regression’.
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TABLE VI: MAE of static estimation on real data.

Method Angle Dataset#
[deg] 4 5

Before MLE Roll 2.272 3.484
fine-tuning (ours, all) Pitch 4.816 5.828
MLE Roll 1.762 1.951

(ours, selected) | Pitch 4.043 4.551

Regression Roll 2217 3.140

Pitch 4.292 5.612

After MLE Roll 1.505 2.992
fine-tuning (ours, all) Pitch 1.349 3.273
MLE Roll 1.253 1.656

(ours, selected) | Pitch 1.114 2.364

Regression Roll 1.264 2.567

Pitch 1.296 3.121
Statistics Roll 15.803  14.125
Pitch 10.277  13.222

Qerror = —61.7 deg "' Perror = —0.6 deg.

Borror = +25.1 deg Dorror = +1.4 deg
n=7e—4m?/s° 1 =>5e—5m®/s®

Truth §

Inference fi Inference fi Truth §

(a) Large n example (b) Small n example

Fig. 10: Examples with 7 values.

With ‘Gyro+MLE (ours)’, about 13 % and 43 % of the
inferences were rejected by the threshold TH,, during the
flight in ‘Neighborhood’ and ‘SoccerField’, respectively. This
can avoid observing outputs with high uncertainty. Especially,
‘MLE w/o rejection’ tended to output large error and large
variance when the attitude angles exceeded the trained range
i.e. [-30 deg, 30 deg].

C. Validation of real-time estimation in real world

To see the fine-tuned DNN can work in real world, two types
of experiments with real sensors (Fig.3) were performed.

1) Indoor experiment with motion capture: The sensors
were hand-carried in an indoor environment of 4.5 m X 6
m for about 23 minutes. Motion capture cameras (Vicon Vero
v1.3X) were used for measuring the ground truth. Note that
the DNN was not trained in this area.

Table VIII shows the MAE of the estimated attitude. The
proposed method suppressed accumulation of error also in
real world. In the flat indoor environment, the MAE given
by the proposed method was almost the same as that of
‘Gyro+Acc’. The acceleration measured with the IMU is not
integrated in the proposed EKF in this paper just for making
the validation simple, but it actually can be integrated, and
it would be more stable estimation. For reference, the error
given by ‘Gyro+Acc+MLE’ was @error = 2.290 deg, Oorror =
1.618 deg.

2) Outdoor experiment: The motion capture cameras mea-
sure the attitude accurately, but the captured area is limited.
To complement that, a long distance experiment was also
performed. Detailed quantitative evaluation of the accuracy
was done in the previous section, thus this section is just for
seeing that the proposed method also be able to work in real
world.

(a) Known environ- (b) Unknown environ- (c) Real world

ment ment

Fig. 11: Driving courses. The AirSim’s drone flew in ‘Neigh-
borhood’ (a) for 5 rounds for about 22 minutes, and ‘Soc-
cerField” (b) for 3 rounds for about 6 minutes, respectively.
The real sensors were carried in the campus (c) for around 5
minutes.

(a) Roll

GyrotRegression  MLE — Gyr

Gyro+NDT 0 +MLE (ours)

§

S — f“«\ e e N 4,,""'
u v \'\,«\,.,Mrv\y\‘ MW Y "‘-M'\), N \Q o8 i
L B !

1100 ime s

(b) Pitch

n_—TH [

©n

Fig. 12: Real-time plotting in ‘Neighborhood’. The graphs
show the last 330 seconds of the synthetic flight. ‘MLE’ tended
to output large variance 1 when the error is large.

The sensors were hand-carried for around 5 minutes in Area
IT (Fig.11c) where the DNN was not trained. Since the ground
truth is not available while the sensors are being carried, the
estimated attitude at the end of carrying was evaluated to see
error accumulation. The sensors were placed on a flat floor
at the start and end of the experiment as Fig.13, and the
ground truth was assumed as ¢gx = 0 deg, 0y = 0 deg.
This evaluation method is based on the related study [14].

Table IX shows the error of the estimation at the last pose.
The proposed method suppressed accumulation of error during
the driving outdoor.

V. CONCLUSIONS AND FUTURE WORK

The proposed method integrates a gyroscope and the DNN
for estimating self-attitude in real-time. The proposed network
estimates the gravity direction from a single shot image. The
network outputs not only the gravity vector, but also a covari-
ance matrix. It was trained with synthetic data, and was fine-
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TABLE VII: MAE of dynamic estimation in simulator.

Method Neighborhood SoccerField
Roll Pitch Roll Pitch
[deg] [deg] | [deg] [deg]
Gyro 14.524  12.562 | 6.424  4.679
Gyro+Acc 2.920 3380 | 3.155 3.091
Gyro+NDT 7.456 6.516 | 4.067 2.646
Gyro+Regression 2.793 1.645 | 3293  2.049
MLE w/o rejection 5.016 5.711 4.098 4.926
Gyro+MLE (ours) 2.703 1.598 2949 1.777

TABLE VIII: MAE of dynamic estimation in mocap area.

H Roll [deg]  Pitch [deg]
Gyro 6.012 5.100
Gyro+Acc 2.509 1.648
Gyro+Regression 2.840 2.764
MLE w/o rejection 4.808 7.858
Gyro+MLE (ours) 2.407 1.902

tuned with real data. Pre-training with the large synthetic data
and augmenting the data help making the learning efficient.
The static experiment showed the DNN can infer the gravity
direction with the uncertainty. For dynamic estimation, angular
rates from a gyroscope and the DNN’s outputs are integrated
in the EKF. The inferred covariance matrices are used for
adjusting the process noise and for filtering out infers with
large variance. The dynamic experiments showed the proposed
method can be used for real-time estimation.

Using multiple cameras or other sensors for estimating the
attitude is our future work.

APPENDIX

o Source code and dataset. The code is implemented using
Python, C++, PyTorch API and ROS APIL.

https://github.com/ozakiryota/dnn_attitude_estimation
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