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EKF‑based self‑attitude estimation with DNN 
learning landscape information
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Abstract 

This paper presents an EKF-based self-attitude estimation with a DNN (deep neural network) learning landscape infor-
mation. The method integrates gyroscopic angular velocity and DNN inference in the EKF. The DNN predicts a gravity 
vector in a camera frame. The input of the network is a camera image, the outputs are a mean vector and a covariance 
matrix of the gravity. It is trained and validated with a dataset of images and corresponded gravity vectors. The dataset 
is collected in a flight simulator because we can easily obtain various gravity vectors, although the method is not only 
for UAVs. Using a simulator breaks the limitation of amount of collecting data with ground truth. The validation shows 
the network can predict the gravity vector from only a single shot image. It also shows that the covariance matrix 
expresses the uncertainty of the inference. The covariance matrix is used for integrating the inference in the EKF. Flight 
data of a drone is also recorded in the simulator, and the EKF-based method is tested with it. It shows the method 
suppresses accumulative error by integrating the network outputs.
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Introduction
Estimating attitude of a robot or a UAV is one of the clas-
sic problems of mobile robotics. Especially, real-time 
estimation is required for real-time attitude control. 
The attitude is generally estimated with inertial sensors 
such as accelerometers and gyroscopes. However, mobile 
robots have their own acceleration. Moreover, on-road 
robots also receive pulses from the ground, and UAVs 
suffer from vibration of their rotors. These need to be 
filtered out from the accelerometer. On the other hand, 
integration of gyroscopic angular rate has problems of 
drift and bias. These disturbances worsen the accuracy 
of the estimation. To complement each other, these iner-
tial data are fused, generally [1]. Nevertheless, dealing the 
disturbances with only inertial sensors is quite difficult.

To reduce the influence of these disturbances, many 
kinds of SLAM (Simultaneous Localization And Map-
ping) [2] have been proposed. SLAM with LiDAR regis-
ters point clouds by ICP [3], NDT [4], and so on. Many 

visual SLAM with cameras have also been proposed [5, 
6]. SLAM often contains accumulative error since rela-
tive pose changes with error are summed up. Some 
methods use prior information such as 3D maps for esti-
mating self-pose [7]. These methods correct the error 
by matching the prior information against data from the 
sensor. However, they work only in environments where 
maps are available. Moreover, creating a map is time-
consuming and also requires update. Some methods [8, 
9] estimate attitude under Manhattan world assumption. 
They assume that planes and edges in the environment 
are orthogonal to each other. It helps achieving drift-free 
estimation. However, it is difficult for this kind of meth-
ods to avoid being affected by objects which do not satisfy 
the assumption.

Deep learning has been used for attitude estimation in 
recent years. In [10], IMU-based odometry by end-to-
end learning has been proposed. In [11], a deep neural 
network identifies the measurement noise characteris-
tics of IMU. In [12], a neural network estimates angular 
rates from sequential images. It was trained with syn-
thetic and real images. The large synthetic dataset was 
collected in AirSim [13] which offers visually realistic 
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graphics. In [14], a gravity vector is directly estimated 
from a single shot image. This is based on expectation 
that the network can learn edge, context, and landscape 
information; for example, most of all artificial buildings 
should be built vertically, the sky should be seen when 
the camera orients upper, and so on. The method does 
not depend on time sequence since only a single shot 
image is used to estimate the attitude. It helps suppress-
ing drift, noise, and accumulative error. This method 
is the most similar to our proposed method. However, 
this method contains some problems. It cannot express 
uncertainty of the prediction; for instance, the network 
outputs estimation even when the camera is all covered 
by obstacles, when less features are captured, and so 
on. These outputs with large error worsen estimation 
when it is used in filter functions such as Kalman filter 
[15]. Therefore, they should be detected and be rejected 
before the integration.

To address these issues above, this paper presents self-
attitude estimation with DNN which predicts a gravity 
vector from a single shot image, where the outputs are 
mean and variance. Only outputs with small variance are 
absorbed in the EKF (extended Kalman filter) to suppress 
accumulative error. Moreover, the output covariance 
matrices are used to adjust the process uncertainty in the 
EKF. The differences from the related work [14] are noted 
below:

•	 A larger dataset is collected in our work by using a 
simulator.

•	 Our network is trained with reliable ground truth 
while the related work collects a dataset with a hand 
carried phone.

•	 L2 normalization is applied to the output gravity vec-
tor while ReLU is applied in the related work.

•	 Our network outputs mean and a covariance matrix 
while the related work directly outputs the gravity 
vector.

•	 Our method filters out DNN inferences with large 
variance before processing the integration in the EKF.

•	 Our method uses the covariance matrix output from 
the DNN as update process noise in the EKF.

The dataset and the source code used in this paper for 
deep learning, and for the EKF have been released in 
open repositories.

DNN estimating gravity vector
The proposed method makes the DNN learn landscape 
information for estimating a gravity vector in a camera 
frame. The gravity is expressed as mean and covariance 
to consider uncertainty of the prediction.

Coordinate definition
A camera frame is defined as a right-handed coordinate 
system which is fixed on the camera pose. It is shown in 
Fig. 1.

Dataset collection
A dataset is collected in AirSim [13]. AirSim is a simu-
lator for drones, cars and more, built on Unreal Engine, 
which provides visually realistic graphics. The dataset 
consists of images and corresponded gravity vectors g in 
the camera frame. The camera pose and weather param-
eters are randomized, and a image and a gravity vector 
are recorded at each pose. The range of random Z is lim-
ited as [2 m, 3 m] in this work. The ranges of random roll 
φ and pitch θ are limited as [-30 deg, 30 deg], respectively. 
Fig. 2 shows examples of the dataset.

Real data is also collected with the sensors in Fig.  3 
for test. The stick is hand-carried, and images and linear 
acceleration vectors measured with the IMU (Xsens MTi-
30) are recorded. They are saved only when the stick is 
shaking less than 0.001 m, 0.1 deg, and when it is at least 
5 deg away from the last saved pose. The IMU is regarded 
as ground truth because it has enough accuracy (within 
0.2 deg) in static according to the specification.

Data transformation and augmentation
Input data and label data are transformed, and are aug-
mented in each epoch of training.

Image (input)
The image is randomly rotated for augmenting the roll 
data. The rotation angle �φ is limited as [– 10 deg, 10 
deg]. The image is resized to 224 × 224 . RGB values are 
normalized. In this work, this normalization is done fol-
lowing mean = (0.5, 0.5, 0.5) and std = (0.5, 0.5, 0.5) . 
Fig. 4 shows an example of the data augmentation.

Fig. 1  Screenshot of AirSim with coordinate description. An IMU and 
a camera are equipped to the drone in the simulator. The purpose 
of the proposed neural network is estimating a gravity vector in the 
camera frame from a front camera image
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Gravity vector (label)
A gravity vector in the camera frame is rotated according 
to �φ . Since the network does not need to learn norm of 
the gravity, L2 normalization is also applied to the vector 
in order to make training efficient.

(1)

g trans = Rot
xyz
(�φ)

g

|g|

Rot
xyz
(�φ) =





1 0 0
0 cos(−�φ) − sin(−�φ)

0 sin(−�φ) cos(−�φ)





Network
The proposed DNN is shown in Fig. 5. It consists of CNN 
layers and FC layers. Its input is a resized image, and its 
outputs are a mean vector of a gravity vector and a covari-
ance matrix. Technically, the output of the FC layers is 
(µgx ,µgy ,µgz , L0, · · · , L5) , and the mean vector µ and the 
covariance matrix � are computed as Eqs. 2, 3, respectively. 
Since the lower-triangular matrix L is required to have 
positive-valued diagonal entries, an exponential function is 
applied to the diagonal elements.

It is expected that the CNN layers lean extracting features 
such as edges, and the FC layers learn landscape informa-
tion. Feature module of VGG16 [16] pre-trained on Ima-
geNet [17] is adopted as the CNN layers of the proposed 
method. All layers, except the final output layer, use the 
ReLU function [18] as activation function. All FC layers, 
except the final output layer, use the 10% Dropout [19].

Loss function
By learning the distribution of the dataset and updating the 
weights to maximize the probability density for the out-
puts, the DNN can output mean and variance. Assuming 
that the estimation follows a multivariate normal distribu-
tion, the probability density is computed as Eq. 4.

(2)µ =
(µgx ,µgy ,µgz )

T

|(µgx ,µgy ,µgz )
T|

(3)� = LLT, L =





exp(L0) 0 0
L1 exp(L2) 0
L3 L4 exp(L5)





(4)

P(x|µ,�) =
exp(− 1

2 (x − µ)T�−1(x − µ))
√

(2π)k |�|
, k = rank(�)

Fig. 2  Examples of datasets. The dataset consists of images and 
correspond gravity vectors g [m/s2] in the camera frame. These 
examples were collected in “Neighborhood” of AirSim. The camera 
pose and weather parameters are randomized for creating a dataset. 
An example of the weather parameter is that the road in the lower 
right image is covered in snow

Fig. 3  Sensor stick. Images and acceleration are recorded with 
this stick when it is still. The judge whether it is still is processed by 
programing. Note that depth information is not used in this study 
although RealSense D435 is a RGB-D camera

Fig. 4  Example of a transformed image. An image is randomly 
rotated according to �φ . This example shows an image when 
�φ = 10 deg . It is also resized, and is normalized
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where k denotes the dimensions of the variables, i.e. 
k = 3 in the proposed method. To make the network 
learn the probabilistic model, it is trained maximizing 
P(xlabel|µ,�) , where xlabel (= g trans ) is a label of the 
dataset. The total probability density Ptotal of a dataset 
Dlabel is computed by multiplying as Eq. 5.

Since the natural logarithm is a monotonically increasing 
function, maximizing Ptotal can be simplified by taking 
the natural logarithm. This avoids the value becoming too 
small by multiplying, and decreases computational cost. 
Here, Plogtotal denotes a total value of the log-probability.

Moreover, maximizing Plogtotal is equivalent to minimiz-
ing Plogtotal . Finally, the loss function of the proposed 
method is Eq. 7.

where w denotes parameters of the network. The network 
minimizes the loss by updating w.

Optimization
Adaptative Moment Estimation (Adam) [20] is used to 
optimize the parameters. The learning rates are set as 
lrCNN = 0.00001 , lrFC = 0.0001 , where lrCNN is a value 
for the CNN layers, lrFC is a value for the FC layers.

(5)
Ptotal =

n
∏

i=0

P(xlabeli |µi,�i)

Dlabel = [xlabel0 , · · · , xlabeli , · · · , xlabeln ]

(6)Plogtotal =

n
∑

i=0

lnP(xlabeli |µi,�i)

(7)f(w) = −Plogtotal

Validation of DNN
The proposed DNN was validated by comparing to other 
methods. The datasets used in this validation are listed in 
Table 1.

Compared methods
Definitions of methods which were used in this valida-
tion are summarized here.

MLE (ours, all)
“MLE (ours, all)” denotes the proposed method described 
in "DNN estimating gravity vector" section . MLE is short 
for Maximum Likelihood Estimation.

MLE (ours, selected)
“MLE (ours, selected)” denotes the method uses the 
exactly same network and the same parameters as “MLE 
(ours, all)” does, but only samples which output small 
variance are used for validation of attitude estimation. It 
means samples with large variance are filtered out as out-
liers. Assuming β in Eq.  8 expresses uncertainty of the 
prediction, samples with small variance are selected with 
a threshold THβ . In this validation, the threshold is set as 
THβ = 1

n

n
∑

i=0

βi , where n is the number of samples in the 

testing dataset.

Fig. 5  Proposed network architecture. It consists of CNN layers and FC layers. The input data is a resized image, and the output data are a mean 
vector and a covariance matrix. They are computed with an output from the final layer as Eqs. 2, 3, respectively. Log-probability of multivariate 
normal distribution is used as a loss function of this model

Table 1  Dataset list

id# Environment # samples Usage

1 AirSim’s “Neighborhood” 10000 Training

2 ---"--- 1000 Test

3 AirSim’s “SoccerField” 1000 Test

4 Real world 1108 Test
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Regression w/ L2 normalization
“Regression w/ L2 normalization” denotes the network 
which the final FC layer is difference from “MLE (ours)”. 
It outputs a 3d vector without covariance. It is a similar 
architecture as [14]. L2 normalization is applied to the 
final layer while ReLU is applied in [14]. Mean square 
error (MSE) between labels and outputs is used as a loss 
function. Fig. 6 shows the network architecture.

Regression w/o L2 normalization
“Regression w/o L2 normalization” denotes the regres-
sion network without L2 normalization. It is require to 
learn not only the direction, but also norm of the gravity 
vector, i.e. approximately 9.8 m/s2 , in order to minimize 
the loss. This information is not required to estimate atti-
tude φ , θ.

Training and validation
The network was trained with 10000 samples (#1) with a 
batch size of 200 samples for 200 epochs. Another 1000 
samples (#2) were used for test. They were collected in 
“Neighborhood” of AirSim. The training dataset and the 
test dataset were not mixed.

Loss values during training are plotted in Fig.  7. The 
regression models converged much faster than the MLE 
model did. The regression model with L2 normalization 
converged a bit faster than the regression model without 
L2 normalization did. Tables 2, 3 and 4 respectively show 
the loss values after 200 epoch training. It is noted that 
gradient was not computed with the test datasets. It is 
also noted a loss function of the MLE model and one of 
the regression models are difference.

(8)

β =
�

�0,0 ×
�

�1,1 ×
�

�2,2, � =





�0,0 �0,1 �0,2

�1,0 �1,1 �1,2

�2,0 �2,1 �2,2





Another 1000 samples (#3) were also collected in “Soc-
cerField” of AirSim as data in an unknown environment. 
1108 real data samples (#4) were also collected with the 
sensors in Fig. 3. Note that these samples are just for test, 
thus the DNN was not trained with them. The loss values 
of these samples are larger than ones of the known envi-
ronment in which the network was trained.

Attitude estimation
Roll φ and pitch θ of the camera pose in the gravitational 
coordinate are estimated by using µ.

Mean absolute error (MAE) of the estimation of the 
test dataset is shown in Table  5. Variance of the esti-
mated attitude error is shown in Table  6. Both of 
the error and the variance of “MLE (ours, selected)” 
are smaller than the others. 715 samples which has 
β < THβ = 0.00008814 m3/s6 were selected from 1000 
test samples (#2) with “MLE (ours, selected)”.

Comparing “MLE (ours, all)” and “MLE (ours, 
selected)”, filtering by THβ is found valid, which means 
the network expresses the uncertainty by outputting the 
covariance matrix. In order to see this, the samples are 
sorted in Fig.  8. In Fig.  8a, top 50 samples with largest 
estimation error with “MLE (ours)” are shown in order. 
In Fig. 8b, top 50 samples with the largest β with “MLE 
(ours)” are shown in order. 21 samples of the top 50 sam-
ples are mutual of both groups. In Fig.  8a, most of the 
sample images with large error are covered by obstacles, 
and they are dark with much less landscape information. 
There is no way to detect them by the regression model. 
Correlation between error and β are not complete, but 
many samples with large error were detected by sorting 
samples with β . A good example with large β and one 

(9)φ = tan−1
µgy

µgz

, θ = tan−1 −µgx
√

µ2
gy
+ µ2

gz

Fig. 6  Comparative network architecture. This network is almost same as [14]. Whereas the proposed method outputs the mean and variance, this 
one outputs only the mean
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with small β are shown in Fig. 9, respectively. Obviously, 
the sample in Fig.  9a does not have enough landscape 
information to estimate the gravity direction, and the 
proposed network expresses the uncertainty with large β.

Fig. 7  Loss plotting. It is noted a loss functions of the MLE model and one of the regression models are difference. Therefore, their values can not 
be simply compared

Table 2  Loss of MLE (ours) after 200 epochs

Dataset#

#1 #2 #3 #4

Loss [ m/s
2] – 6.4991 – 5.7436 – 2.9386 – 2.7129

Table 3  Loss of Regression w/ L2 normalization after 200 epochs

Dataset#

#1 #2 #3 #4

Loss [ m2/s
4] 0.0011 0.0031 0.0084 0.0055

Table 4  Loss of Regression w/o L2 normalization after 200 
epochs

Dataset#

#1 #2 #3 #4

Loss [ m2/s
4] 0.6588 0.4916 1.0951 0.8284
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Comparing “Regression w/ L2 normalization” and 
“Regression w/o L2 normalization”, L2 normalization 
does not contribute to the accuracy, although the one 
with L2 normalization converged a bit faster than the one 
without L2 normalization did.

A dataset of the unknown environment “Soccer-
Field” (#3) and one of real world (#4) were also used 

for validation. Note that the neural networks were not 
trained in these environments. MAE and variance of 
the error are shown in Tables 7, 8, 9 and 10, respectively. 
Filtering by the threshold THβ made error smaller even 
in the unknown environments. However, the errors and 
the variances of errors are larger than the known envi-
ronment (Tables  5, 6). To reduce difference of results 
between in known environments and in unknown ones, 
wider variety of datasets are needed for training.

EKF‑based self‑attitude estimstion with DNN
The proposed method integrates angular velocities from 
a gyroscope and the DNN outputs in the EKF. The pro-
posed EKF architecture is shown in Fig. 10. The state vec-
tor x of the proposed Kalman filter consists of roll and 
pitch of the robot. Both of the vector x and the covari-
ance matrix P are computed in a prediction process and 
in an update process. The prediction process is computed 
by integrating angular velocity from a gyroscope. The 
update process is computed by observing the output of 
the DNN.

Here, k denotes time step, Sφ , Cφ , Tφ are short for sin φ , 
cosφ , tan φ , respectively in the following sections.

(10)x =
(

φ θ
)T

Table 5  MAE of estimated attitude in known environment (#2)

Roll [deg] Pitch [deg]

MLE (ours, all) 2.620 2.277

MLE (ours, selected) 1.836 1.467

Regression w/ L2 normalization 2.727 2.525

Regression w/o L2 normalization 2.766 2.366

Table 6  Variance of estimated attitude error in known 
environment (#2)

Roll [ deg2] Pitch [ deg2]

MLE (ours, all) 23.139 18.348

MLE (ours, selected) 9.657 4.553

Regression w/ L2 normalization 25.161 21.996

Regression w/o L2 normalization 21.668 18.213

Fig. 8  Sorted samples. A number above each image is a index of a sample. In (a), top 50 samples are sorted in descending order of the 
error in “MLE (ours)”. Error of sample#608 in the regression model is φerror = −35.34 deg, θerror = −25.74 deg . Error of sample#352 is 
φerror = 2.80 deg, θerror = − 12.93 deg . In (b), top 50 samples are sorted in descending order of β in “MLE (ours)”. Mutual samples of the both 
groups are marked with red rectangles
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Prediction process
The state vector x and the covariance matrix P are 
respectively computed as following.

where f  is a state transition model, u denotes a control 
vector, and Rotrpy denotes a rotation matrix for angular 
velocities.

where Jf  denotes f  Jacobean, and Q denotes a covariance 
matrix of the process noise.

Update process
Outputs of the DNN with a large variance value β are 
rejected. A threshold THβ is set for judging β , and only 
outputs with β < THβ are observed in the EKF. The 
observation vector is z.

where µ denotes a mean vector of gravity which is output 
from the DNN. The observation model is h.

(11)

xk = f(xk−1,uk−1) = xk−1 + Rot
rpy
(xk−1)

uk−1

uk−1 = ωk−1�t =





ωxk−1
�t

ωyk−1
�t

ωzk−1
�t





Rot
rpy
(xk−1)

=

�

1
0
Sφk−1

Tθk−1

Cφk−1

Cφk−1
Tθk−1

−Sφk−1

�

(12)

Pk = Jf k−1
Pk−1Jf

T
k−1

+ Qk−1, Jf k−1

∂f

∂x

∣

∣

∣

∣

xk−1,uk−1

(13)z = µ

(14)h(xk ) = Rot
xyz
(xk )

gworld, gworld =





0
0

gworld





Fig. 9  Examples with large β and small β. Obviously, it is hard to 
estimate the gravity direction from the sample (a). The proposed 
network expresses uncertainty of the prediction of the sample (a) by 
outputting large covariance

Table 7  MAE of estimated attitude in unknown environment 
(#3)

Roll [deg] Pitch [deg]

MLE (ours, all) 3.120 4.062

MLE (ours, selected) 2.069 2.549

Regression w/ L2 normalization 3.796 4.386

Regression w/o L2 normalization 3.744 4.695

Table 8  Variance of estimated attitude error in unknown 
environment (#3)

Roll [ deg2] Pitch [ deg2]

MLE (ours, all) 31.170 36.967

MLE (ours, selected) 9.134 12.932

Regression w/ L2 normalization 35.358 45.428

Regression w/o L2 normalization 36.460 55.347

Table 9  MAE of estimated attitude in real world (#4)

Roll [deg] Pitch [deg]

MLE (ours, all) 2.648 4.361

MLE (ours, selected) 2.199 3.755

Regression w/ L2 normalization 2.812 4.665

Regression w/o L2 normalization 3.092 5.371

Table 10  Variance of estimated attitude error in real world (#4)

Roll [ deg2] Pitch [ deg2]

MLE (ours, all) 20.548 20.585

MLE (ours, selected) 9.356 13.971

Regression w/ L2 normalization 20.976 20.982

Regression w/o L2 normalization 25.996 24.160
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where gworld denotes a gravity vector in the world frame 
i.e. gworld � 9.8 m/s2 , Rotxyz denotes a rotation matrix 
for a vector. The covariance matrix of the process noise 
is R.

where γ denotes a hyperparameter for adjusting vari-
ance. The state vector x and the covariance matrix P are 
respectively computed as following.

where Jh denotes h Jacobean, K  denotes a gain matrix, 
and I denotes an identity matrix.

Validation of EKF
The proposed system was validated in real-time. Since 
ground truth is available in the simulator, we used syn-
thetic flight data of a drone.

Compared methods
Definitions of methods which were used in this valida-
tion are summarized here.

Gyro
“Gyro” denotes an estimation method integrating angular 
velocity from a gyroscope.

Gyro+Acc
“Gyro+Acc” denotes an EKF-based estimation method 
integrating angular velocity and linear acceleration from 
IMU.

(15)Rot
xyz
(xk )

=





Cθk Cψk
Cθk Sψk

− Sθk
Sφk Sθk Cψk

− Cφk Sψk
Sφk Sθk Sψk

+ Cφk Cψk
Sφk Cθk

Cφk Sθk Cψk
+ Sφk Sψk

Cφk Sθk Sψk
− Sφk Cψk

Cφk Cθk





(16)R =





γ�0,0 �0,1 �0,2

�1,0 γ�1,1 �1,2

�2,0 �2,1 γ�2,2





(17)

x̂k = xk + K k(zk − h(xk )), P̂k = (I − K k Jhk)Pk

Jhk =
∂h

∂x

∣

∣

∣

∣

xk

, K k = Pk Jh
T
k (JhkPk Jh

T
k + Rk)

−1

Gyro+NDT
“Gyro+NDT” denotes NDT SLAM [4] using 32 layers of 
LiDAR. Angular velocity from a gyroscope, linear veloc-
ity of ground truth and NDT output are integrated in the 
EKF. Note that linear velocity of ground truth is available 
because the environment is a simulator.

Gyro+Regression
“Gyro+Regression” denotes an EKF-based estimation 
method integrating angular velocity from a gyroscope 
and gravity vectors from the regression network (Fig. 6). 
All outputs from the network are integrated in the EKF.

Gyro+MLE (ours)
“Gyro+MLE (ours)” denotes the proposed method 
described in "EKF-based self-attitude estimstion 
with DNN" section. The hyperparameters were set as 
THβ = 8× 10−5 and γ = 1× 104 . They were empirically 
determined based on the result in "Validation of DNN" 
section.

Fig. 10  Proposed EKF architecture. Gyroscopic angular rates are integrated in the prediction process in the EKF. The DNN outputs are integrated in 
the update process in the EKF

Fig. 11  Flight courses. In (a), a course in “Neighborhood” which is 
a known environment for the DNN is shown. The drone flew for 5 
rounds. It took about 22 minutes. In (b), a course in “SoccerField” 
which is an unknown environment for the DNN is shown. The drone 
flew for 3 rounds. It took about 6 minutes



Page 10 of 12Ozaki and Kuroda ﻿Robomech J             (2021) 8:9 

Experimental conditions
Flight data of a drone ware recorded in “Neighbor-
hood” and “SoccerField” of AirSim. “Neighborhood” 
is the same environment where the DNN was trained. 
An IMU and a camera are installed on a drone in the 
simulator. A LiDAR with 32 layers is also used for 
“Gyro+NDT”. The sampling frequency of the IMU, the 
camera and LiDAR are approximately 100 Hz, 12 Hz 
and 20 Hz, respectively. The camera’s horizontal FOV 
is 70 deg. Virtual noise was add to the IMU’s 6-axis 
data. It was randomly added following a normal dis-
tribution with a mean of 0 rad/s , 0 m/s2 and a stand-
ard deviation of 0.1 rad/s , 0.1 m/s2 , respectively. The 

flight courses of “Neighborhood” and “SoccerField” are 
shown in Fig. 11. A computer which has i7-6700 CPU 

Fig. 12  Real-time attitude plotting. In (a), the result of the flight in “Neighborhood” is shown. In (b), the result of the flight in “SoccerField” is shown.

Table 11  MAE of estimated attitude during flight in known 
environment

Roll [deg] Pitch [deg]

Gyro 14.524 12.562

Gyro+Acc 2.920 3.380

Gyro+NDT 7.456 6.516

Gyro+Regression 3.187 1.876

Gyro+MLE (ours) 2.869 1.821
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and GTX1080 GPU with 16 GB memory was used for 
the estimation. The DNN inference computation takes 
around 0.01–0.02 seconds with the computer. The pro-
posed method is not only for UAVs, but it needs to be 
noted that this computer may be over-performance 
for real UAVs. Therefore, testing with a general UAV’s 
computer specification should be necessary when the 
method is used on real UAVs, and it is not the focus of 
this study.

Experimental results
The estimated attitudes are plotted in Fig. 12a. Table 11 
shows MAE of the estimated attitudes in “Neighborhood”. 
MAE of “Gyro+MLE (ours)” is smaller than ones of the 
other methods. “Gyro” had large accumulative error. 
That is natural because noise was added and the method 
does not have any other observation. “Gyro+Acc” does 
not have accumulative error. However it has error con-
stantly, since the acceleration values of the sensor contain 
own acceleration of the robot. “Gyro+NDT” accumu-
lated error slower than “Gyro” did by using LiDAR, but it 
could not remove the accumulation. “Gyro+Regression” 
and “Gyro+MLE (ours)” corrected the accumulative 
error by observing the estimated gravity. Comparing 
“Gyro+Regression” and “Gyro+MLE (ours)”, filtering 
out the DNN outputs with large β is found valid. With 
“Gyro+MLE (ours)”, 31 % of the outputs is rejected by the 
threshold in the flight.

MAE of the estimation in “SoccerField” is shown in 
Table  12. “Gyro+Regression” and “Gyro+MLE (ours)” 
suppressed accumulative error even in the environment 
where the DNN was not trained. MAE of “Gyro+MLE 
(ours)” is smaller than ones of the other methods. With 
“Gyro+MLE (ours)”, more outputs (58 %) from the DNN 
are filtered out by the threshold THβ in the unknown 
environment (“SoccerField”) than in the known environ-
ment (“Neighborhood”). This can avoid observing out-
puts with high uncertainty. However, it leads chances 
of correcting error less. In other words, the proposed 
method can not correct error when the large variance is 
continuing. To compensate this decrease of the chances, 
the proposed method actually can integrates other 

observations such as IMU’s acceleration, SLAM, and so 
on in a future work. Whereas, in this experiment, the 
proposed method integrates only angular rate and the 
DNN outputs in order to make the validation simple.

Conclusions and future work
EKF-based self-attitude estimation with DNN learning 
landscape information was proposed. The DNN estimates 
direction of gravity from a single shot image. The network 
outputs not only the gravity vector, but also a covariance 
matrix. Training was done with synthetic data of AirSim, 
and validation was done with both of the synthetic data 
and real sensors’ data. In the validation, many samples with 
large error are filtered out by judging variance values. It 
means the proposed network expresses uncertainty of the 
prediction by outputting covariance matrices. The out-
puts from the DNN and angular velocity from a gyroscope 
are integrated in the EKF. The covariance matrix is used 
adjusting process noise. Moreover, outputs with too large 
variance are filtered out by a threshold. This EKF-based 
proposed method was validated with flight data of a drone 
in AirSim environments. In the experiments, the proposed 
method suppressed accumulative error by using the DNN.

In a future work, wider variety of datasets including real 
data are needed for the DNN to close the gap between the 
results in known environments and in unknown environ-
ments. Simulator data can be used for pre-training of the 
DNN before fine tuning with the real data. Only the roll 
augmentation is applied in this paper because it is easy and 
simple, but pitch augmentation by the homography trans-
formation should also be valid for fine-tuning with the 
less real samples. Using other sensors or combining other 
methods is another future work. The experiments in this 
paper were done only with the daytime condition, but real 
robots should work in day and night. Therefor the future 
work needs to compensate the camera’s weak point for 
night operations.
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Table 12  MAE of estimated attitude during flight in unknown 
environment

Roll [deg] Pitch [deg]

Gyro 6.424 4.679

Gyro+Acc 3.155 3.091

Gyro+NDT 4.067 2.646

Gyro+Regression 3.248 1.984

Gyro+MLE (ours) 2.869 1.785
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