
Ozaki and Kuroda ﻿Robomech J (2021) 8:9
https://doi.org/10.1186/s40648-021-00196-3

RESEARCH ARTICLE

EKF‑based self‑attitude estimation with DNN
learning landscape information
Ryota Ozaki*  and Yoji Kuroda

Abstract 

This paper presents an EKF-based self-attitude estimation with a DNN (deep neural network) learning landscape infor-
mation. The method integrates gyroscopic angular velocity and DNN inference in the EKF. The DNN predicts a gravity
vector in a camera frame. The input of the network is a camera image, the outputs are a mean vector and a covariance
matrix of the gravity. It is trained and validated with a dataset of images and corresponded gravity vectors. The dataset
is collected in a flight simulator because we can easily obtain various gravity vectors, although the method is not only
for UAVs. Using a simulator breaks the limitation of amount of collecting data with ground truth. The validation shows
the network can predict the gravity vector from only a single shot image. It also shows that the covariance matrix
expresses the uncertainty of the inference. The covariance matrix is used for integrating the inference in the EKF. Flight
data of a drone is also recorded in the simulator, and the EKF-based method is tested with it. It shows the method
suppresses accumulative error by integrating the network outputs.

Keywords:  Attitude estimation, Mobile robotics, Deep learning, Extended Kalman filter

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

Introduction
Estimating attitude of a robot or a UAV is one of the clas-
sic problems of mobile robotics. Especially, real-time
estimation is required for real-time attitude control.
The attitude is generally estimated with inertial sensors
such as accelerometers and gyroscopes. However, mobile
robots have their own acceleration. Moreover, on-road
robots also receive pulses from the ground, and UAVs
suffer from vibration of their rotors. These need to be
filtered out from the accelerometer. On the other hand,
integration of gyroscopic angular rate has problems of
drift and bias. These disturbances worsen the accuracy
of the estimation. To complement each other, these iner-
tial data are fused, generally [1]. Nevertheless, dealing the
disturbances with only inertial sensors is quite difficult.

To reduce the influence of these disturbances, many
kinds of SLAM (Simultaneous Localization And Map-
ping) [2] have been proposed. SLAM with LiDAR regis-
ters point clouds by ICP [3], NDT [4], and so on. Many

visual SLAM with cameras have also been proposed [5,
6]. SLAM often contains accumulative error since rela-
tive pose changes with error are summed up. Some
methods use prior information such as 3D maps for esti-
mating self-pose [7]. These methods correct the error
by matching the prior information against data from the
sensor. However, they work only in environments where
maps are available. Moreover, creating a map is time-
consuming and also requires update. Some methods [8,
9] estimate attitude under Manhattan world assumption.
They assume that planes and edges in the environment
are orthogonal to each other. It helps achieving drift-free
estimation. However, it is difficult for this kind of meth-
ods to avoid being affected by objects which do not satisfy
the assumption.

Deep learning has been used for attitude estimation in
recent years. In [10], IMU-based odometry by end-to-
end learning has been proposed. In [11], a deep neural
network identifies the measurement noise characteris-
tics of IMU. In [12], a neural network estimates angular
rates from sequential images. It was trained with syn-
thetic and real images. The large synthetic dataset was
collected in AirSim [13] which offers visually realistic

Open Access

*Correspondence: ce192021@meiji.ac.jp
Graduate School of Science and Technology, Meiji University, 1‑1‑1,
Higashimita, Tama‑ku, Kanagawa, JP 214‑8571, Japan

http://orcid.org/0000-0002-7459-6500
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-021-00196-3&domain=pdf

Page 2 of 12Ozaki and Kuroda ﻿Robomech J (2021) 8:9

graphics. In [14], a gravity vector is directly estimated
from a single shot image. This is based on expectation
that the network can learn edge, context, and landscape
information; for example, most of all artificial buildings
should be built vertically, the sky should be seen when
the camera orients upper, and so on. The method does
not depend on time sequence since only a single shot
image is used to estimate the attitude. It helps suppress-
ing drift, noise, and accumulative error. This method
is the most similar to our proposed method. However,
this method contains some problems. It cannot express
uncertainty of the prediction; for instance, the network
outputs estimation even when the camera is all covered
by obstacles, when less features are captured, and so
on. These outputs with large error worsen estimation
when it is used in filter functions such as Kalman filter
[15]. Therefore, they should be detected and be rejected
before the integration.

To address these issues above, this paper presents self-
attitude estimation with DNN which predicts a gravity
vector from a single shot image, where the outputs are
mean and variance. Only outputs with small variance are
absorbed in the EKF (extended Kalman filter) to suppress
accumulative error. Moreover, the output covariance
matrices are used to adjust the process uncertainty in the
EKF. The differences from the related work [14] are noted
below:

•	 A larger dataset is collected in our work by using a
simulator.

•	 Our network is trained with reliable ground truth
while the related work collects a dataset with a hand
carried phone.

•	 L2 normalization is applied to the output gravity vec-
tor while ReLU is applied in the related work.

•	 Our network outputs mean and a covariance matrix
while the related work directly outputs the gravity
vector.

•	 Our method filters out DNN inferences with large
variance before processing the integration in the EKF.

•	 Our method uses the covariance matrix output from
the DNN as update process noise in the EKF.

The dataset and the source code used in this paper for
deep learning, and for the EKF have been released in
open repositories.

DNN estimating gravity vector
The proposed method makes the DNN learn landscape
information for estimating a gravity vector in a camera
frame. The gravity is expressed as mean and covariance
to consider uncertainty of the prediction.

Coordinate definition
A camera frame is defined as a right-handed coordinate
system which is fixed on the camera pose. It is shown in
Fig. 1.

Dataset collection
A dataset is collected in AirSim [13]. AirSim is a simu-
lator for drones, cars and more, built on Unreal Engine,
which provides visually realistic graphics. The dataset
consists of images and corresponded gravity vectors g in
the camera frame. The camera pose and weather param-
eters are randomized, and a image and a gravity vector
are recorded at each pose. The range of random Z is lim-
ited as [2 m, 3 m] in this work. The ranges of random roll
φ and pitch θ are limited as [-30 deg, 30 deg], respectively.
Fig. 2 shows examples of the dataset.

Real data is also collected with the sensors in Fig. 3
for test. The stick is hand-carried, and images and linear
acceleration vectors measured with the IMU (Xsens MTi-
30) are recorded. They are saved only when the stick is
shaking less than 0.001 m, 0.1 deg, and when it is at least
5 deg away from the last saved pose. The IMU is regarded
as ground truth because it has enough accuracy (within
0.2 deg) in static according to the specification.

Data transformation and augmentation
Input data and label data are transformed, and are aug-
mented in each epoch of training.

Image (input)
The image is randomly rotated for augmenting the roll
data. The rotation angle �φ is limited as [– 10 deg, 10
deg]. The image is resized to 224 × 224 . RGB values are
normalized. In this work, this normalization is done fol-
lowing mean = (0.5, 0.5, 0.5) and std = (0.5, 0.5, 0.5) .
Fig. 4 shows an example of the data augmentation.

Fig. 1  Screenshot of AirSim with coordinate description. An IMU and
a camera are equipped to the drone in the simulator. The purpose
of the proposed neural network is estimating a gravity vector in the
camera frame from a front camera image

Page 3 of 12Ozaki and Kuroda ﻿Robomech J (2021) 8:9 	

Gravity vector (label)
A gravity vector in the camera frame is rotated according
to �φ . Since the network does not need to learn norm of
the gravity, L2 normalization is also applied to the vector
in order to make training efficient.

(1)

g trans = Rot
xyz
(�φ)

g

|g|

Rot
xyz
(�φ) =





1 0 0
0 cos(−�φ) − sin(−�φ)

0 sin(−�φ) cos(−�φ)





Network
The proposed DNN is shown in Fig. 5. It consists of CNN
layers and FC layers. Its input is a resized image, and its
outputs are a mean vector of a gravity vector and a covari-
ance matrix. Technically, the output of the FC layers is
(µgx ,µgy ,µgz , L0, · · · , L5) , and the mean vector µ and the
covariance matrix � are computed as Eqs. 2, 3, respectively.
Since the lower-triangular matrix L is required to have
positive-valued diagonal entries, an exponential function is
applied to the diagonal elements.

It is expected that the CNN layers lean extracting features
such as edges, and the FC layers learn landscape informa-
tion. Feature module of VGG16 [16] pre-trained on Ima-
geNet [17] is adopted as the CNN layers of the proposed
method. All layers, except the final output layer, use the
ReLU function [18] as activation function. All FC layers,
except the final output layer, use the 10% Dropout [19].

Loss function
By learning the distribution of the dataset and updating the
weights to maximize the probability density for the out-
puts, the DNN can output mean and variance. Assuming
that the estimation follows a multivariate normal distribu-
tion, the probability density is computed as Eq. 4.

(2)µ =
(µgx ,µgy ,µgz)

T

|(µgx ,µgy ,µgz)
T|

(3)� = LLT, L =





exp(L0) 0 0
L1 exp(L2) 0
L3 L4 exp(L5)





(4)

P(x|µ,�) =
exp(− 1

2 (x − µ)T�−1(x − µ))
√

(2π)k |�|
, k = rank(�)

Fig. 2  Examples of datasets. The dataset consists of images and
correspond gravity vectors g [m/s2] in the camera frame. These
examples were collected in “Neighborhood” of AirSim. The camera
pose and weather parameters are randomized for creating a dataset.
An example of the weather parameter is that the road in the lower
right image is covered in snow

Fig. 3  Sensor stick. Images and acceleration are recorded with
this stick when it is still. The judge whether it is still is processed by
programing. Note that depth information is not used in this study
although RealSense D435 is a RGB-D camera

Fig. 4  Example of a transformed image. An image is randomly
rotated according to �φ . This example shows an image when
�φ = 10 deg . It is also resized, and is normalized

Page 4 of 12Ozaki and Kuroda ﻿Robomech J (2021) 8:9

where k denotes the dimensions of the variables, i.e.
k = 3 in the proposed method. To make the network
learn the probabilistic model, it is trained maximizing
P(xlabel|µ,�) , where xlabel (= g trans ) is a label of the
dataset. The total probability density Ptotal of a dataset
Dlabel is computed by multiplying as Eq. 5.

Since the natural logarithm is a monotonically increasing
function, maximizing Ptotal can be simplified by taking
the natural logarithm. This avoids the value becoming too
small by multiplying, and decreases computational cost.
Here, Plogtotal denotes a total value of the log-probability.

Moreover, maximizing Plogtotal is equivalent to minimiz-
ing Plogtotal . Finally, the loss function of the proposed
method is Eq. 7.

where w denotes parameters of the network. The network
minimizes the loss by updating w.

Optimization
Adaptative Moment Estimation (Adam) [20] is used to
optimize the parameters. The learning rates are set as
lrCNN = 0.00001 , lrFC = 0.0001 , where lrCNN is a value
for the CNN layers, lrFC is a value for the FC layers.

(5)
Ptotal =

n
∏

i=0

P(xlabeli |µi,�i)

Dlabel = [xlabel0 , · · · , xlabeli , · · · , xlabeln]

(6)Plogtotal =

n
∑

i=0

lnP(xlabeli |µi,�i)

(7)f(w) = −Plogtotal

Validation of DNN
The proposed DNN was validated by comparing to other
methods. The datasets used in this validation are listed in
Table 1.

Compared methods
Definitions of methods which were used in this valida-
tion are summarized here.

MLE (ours, all)
“MLE (ours, all)” denotes the proposed method described
in "DNN estimating gravity vector" section . MLE is short
for Maximum Likelihood Estimation.

MLE (ours, selected)
“MLE (ours, selected)” denotes the method uses the
exactly same network and the same parameters as “MLE
(ours, all)” does, but only samples which output small
variance are used for validation of attitude estimation. It
means samples with large variance are filtered out as out-
liers. Assuming β in Eq. 8 expresses uncertainty of the
prediction, samples with small variance are selected with
a threshold THβ . In this validation, the threshold is set as
THβ = 1

n

n
∑

i=0

βi , where n is the number of samples in the

testing dataset.

Fig. 5  Proposed network architecture. It consists of CNN layers and FC layers. The input data is a resized image, and the output data are a mean
vector and a covariance matrix. They are computed with an output from the final layer as Eqs. 2, 3, respectively. Log-probability of multivariate
normal distribution is used as a loss function of this model

Table 1  Dataset list

id# Environment # samples Usage

1 AirSim’s “Neighborhood” 10000 Training

2 ---"--- 1000 Test

3 AirSim’s “SoccerField” 1000 Test

4 Real world 1108 Test

Page 5 of 12Ozaki and Kuroda ﻿Robomech J (2021) 8:9 	

Regression w/ L2 normalization
“Regression w/ L2 normalization” denotes the network
which the final FC layer is difference from “MLE (ours)”.
It outputs a 3d vector without covariance. It is a similar
architecture as [14]. L2 normalization is applied to the
final layer while ReLU is applied in [14]. Mean square
error (MSE) between labels and outputs is used as a loss
function. Fig. 6 shows the network architecture.

Regression w/o L2 normalization
“Regression w/o L2 normalization” denotes the regres-
sion network without L2 normalization. It is require to
learn not only the direction, but also norm of the gravity
vector, i.e. approximately 9.8 m/s2 , in order to minimize
the loss. This information is not required to estimate atti-
tude φ , θ.

Training and validation
The network was trained with 10000 samples (#1) with a
batch size of 200 samples for 200 epochs. Another 1000
samples (#2) were used for test. They were collected in
“Neighborhood” of AirSim. The training dataset and the
test dataset were not mixed.

Loss values during training are plotted in Fig. 7. The
regression models converged much faster than the MLE
model did. The regression model with L2 normalization
converged a bit faster than the regression model without
L2 normalization did. Tables 2, 3 and 4 respectively show
the loss values after 200 epoch training. It is noted that
gradient was not computed with the test datasets. It is
also noted a loss function of the MLE model and one of
the regression models are difference.

(8)

β =
�

�0,0 ×
�

�1,1 ×
�

�2,2, � =





�0,0 �0,1 �0,2

�1,0 �1,1 �1,2

�2,0 �2,1 �2,2





Another 1000 samples (#3) were also collected in “Soc-
cerField” of AirSim as data in an unknown environment.
1108 real data samples (#4) were also collected with the
sensors in Fig. 3. Note that these samples are just for test,
thus the DNN was not trained with them. The loss values
of these samples are larger than ones of the known envi-
ronment in which the network was trained.

Attitude estimation
Roll φ and pitch θ of the camera pose in the gravitational
coordinate are estimated by using µ.

Mean absolute error (MAE) of the estimation of the
test dataset is shown in Table 5. Variance of the esti-
mated attitude error is shown in Table 6. Both of
the error and the variance of “MLE (ours, selected)”
are smaller than the others. 715 samples which has
β < THβ = 0.00008814 m3/s6 were selected from 1000
test samples (#2) with “MLE (ours, selected)”.

Comparing “MLE (ours, all)” and “MLE (ours,
selected)”, filtering by THβ is found valid, which means
the network expresses the uncertainty by outputting the
covariance matrix. In order to see this, the samples are
sorted in Fig. 8. In Fig. 8a, top 50 samples with largest
estimation error with “MLE (ours)” are shown in order.
In Fig. 8b, top 50 samples with the largest β with “MLE
(ours)” are shown in order. 21 samples of the top 50 sam-
ples are mutual of both groups. In Fig. 8a, most of the
sample images with large error are covered by obstacles,
and they are dark with much less landscape information.
There is no way to detect them by the regression model.
Correlation between error and β are not complete, but
many samples with large error were detected by sorting
samples with β . A good example with large β and one

(9)φ = tan−1
µgy

µgz

, θ = tan−1 −µgx
√

µ2
gy
+ µ2

gz

Fig. 6  Comparative network architecture. This network is almost same as [14]. Whereas the proposed method outputs the mean and variance, this
one outputs only the mean

Page 6 of 12Ozaki and Kuroda ﻿Robomech J (2021) 8:9

with small β are shown in Fig. 9, respectively. Obviously,
the sample in Fig. 9a does not have enough landscape
information to estimate the gravity direction, and the
proposed network expresses the uncertainty with large β.

Fig. 7  Loss plotting. It is noted a loss functions of the MLE model and one of the regression models are difference. Therefore, their values can not
be simply compared

Table 2  Loss of MLE (ours) after 200 epochs

Dataset#

#1 #2 #3 #4

Loss [ m/s
2] – 6.4991 – 5.7436 – 2.9386 – 2.7129

Table 3  Loss of Regression w/ L2 normalization after 200 epochs

Dataset#

#1 #2 #3 #4

Loss [ m2/s
4] 0.0011 0.0031 0.0084 0.0055

Table 4  Loss of Regression w/o L2 normalization after 200
epochs

Dataset#

#1 #2 #3 #4

Loss [ m2/s
4] 0.6588 0.4916 1.0951 0.8284

Page 7 of 12Ozaki and Kuroda ﻿Robomech J (2021) 8:9 	

Comparing “Regression w/ L2 normalization” and
“Regression w/o L2 normalization”, L2 normalization
does not contribute to the accuracy, although the one
with L2 normalization converged a bit faster than the one
without L2 normalization did.

A dataset of the unknown environment “Soccer-
Field” (#3) and one of real world (#4) were also used

for validation. Note that the neural networks were not
trained in these environments. MAE and variance of
the error are shown in Tables 7, 8, 9 and 10, respectively.
Filtering by the threshold THβ made error smaller even
in the unknown environments. However, the errors and
the variances of errors are larger than the known envi-
ronment (Tables 5, 6). To reduce difference of results
between in known environments and in unknown ones,
wider variety of datasets are needed for training.

EKF‑based self‑attitude estimstion with DNN
The proposed method integrates angular velocities from
a gyroscope and the DNN outputs in the EKF. The pro-
posed EKF architecture is shown in Fig. 10. The state vec-
tor x of the proposed Kalman filter consists of roll and
pitch of the robot. Both of the vector x and the covari-
ance matrix P are computed in a prediction process and
in an update process. The prediction process is computed
by integrating angular velocity from a gyroscope. The
update process is computed by observing the output of
the DNN.

Here, k denotes time step, Sφ , Cφ , Tφ are short for sin φ ,
cosφ , tan φ , respectively in the following sections.

(10)x =
(

φ θ
)T

Table 5  MAE of estimated attitude in known environment (#2)

Roll [deg] Pitch [deg]

MLE (ours, all) 2.620 2.277

MLE (ours, selected) 1.836 1.467

Regression w/ L2 normalization 2.727 2.525

Regression w/o L2 normalization 2.766 2.366

Table 6  Variance of estimated attitude error in known
environment (#2)

Roll [ deg2] Pitch [ deg2]

MLE (ours, all) 23.139 18.348

MLE (ours, selected) 9.657 4.553

Regression w/ L2 normalization 25.161 21.996

Regression w/o L2 normalization 21.668 18.213

Fig. 8  Sorted samples. A number above each image is a index of a sample. In (a), top 50 samples are sorted in descending order of the
error in “MLE (ours)”. Error of sample#608 in the regression model is φerror = −35.34 deg, θerror = −25.74 deg . Error of sample#352 is
φerror = 2.80 deg, θerror = − 12.93 deg . In (b), top 50 samples are sorted in descending order of β in “MLE (ours)”. Mutual samples of the both
groups are marked with red rectangles

Page 8 of 12Ozaki and Kuroda ﻿Robomech J (2021) 8:9

Prediction process
The state vector x and the covariance matrix P are
respectively computed as following.

where f is a state transition model, u denotes a control
vector, and Rotrpy denotes a rotation matrix for angular
velocities.

where Jf denotes f Jacobean, and Q denotes a covariance
matrix of the process noise.

Update process
Outputs of the DNN with a large variance value β are
rejected. A threshold THβ is set for judging β , and only
outputs with β < THβ are observed in the EKF. The
observation vector is z.

where µ denotes a mean vector of gravity which is output
from the DNN. The observation model is h.

(11)

xk = f(xk−1,uk−1) = xk−1 + Rot
rpy
(xk−1)

uk−1

uk−1 = ωk−1�t =





ωxk−1
�t

ωyk−1
�t

ωzk−1
�t





Rot
rpy
(xk−1)

=

�

1
0
Sφk−1

Tθk−1

Cφk−1

Cφk−1
Tθk−1

−Sφk−1

�

(12)

Pk = Jf k−1
Pk−1Jf

T
k−1

+ Qk−1, Jf k−1

∂f

∂x

∣

∣

∣

∣

xk−1,uk−1

(13)z = µ

(14)h(xk) = Rot
xyz
(xk)

gworld, gworld =





0
0

gworld





Fig. 9  Examples with large β and small β. Obviously, it is hard to
estimate the gravity direction from the sample (a). The proposed
network expresses uncertainty of the prediction of the sample (a) by
outputting large covariance

Table 7  MAE of estimated attitude in unknown environment
(#3)

Roll [deg] Pitch [deg]

MLE (ours, all) 3.120 4.062

MLE (ours, selected) 2.069 2.549

Regression w/ L2 normalization 3.796 4.386

Regression w/o L2 normalization 3.744 4.695

Table 8  Variance of estimated attitude error in unknown
environment (#3)

Roll [ deg2] Pitch [ deg2]

MLE (ours, all) 31.170 36.967

MLE (ours, selected) 9.134 12.932

Regression w/ L2 normalization 35.358 45.428

Regression w/o L2 normalization 36.460 55.347

Table 9  MAE of estimated attitude in real world (#4)

Roll [deg] Pitch [deg]

MLE (ours, all) 2.648 4.361

MLE (ours, selected) 2.199 3.755

Regression w/ L2 normalization 2.812 4.665

Regression w/o L2 normalization 3.092 5.371

Table 10  Variance of estimated attitude error in real world (#4)

Roll [ deg2] Pitch [ deg2]

MLE (ours, all) 20.548 20.585

MLE (ours, selected) 9.356 13.971

Regression w/ L2 normalization 20.976 20.982

Regression w/o L2 normalization 25.996 24.160

Page 9 of 12Ozaki and Kuroda ﻿Robomech J (2021) 8:9 	

where gworld denotes a gravity vector in the world frame
i.e. gworld � 9.8 m/s2 , Rotxyz denotes a rotation matrix
for a vector. The covariance matrix of the process noise
is R.

where γ denotes a hyperparameter for adjusting vari-
ance. The state vector x and the covariance matrix P are
respectively computed as following.

where Jh denotes h Jacobean, K denotes a gain matrix,
and I denotes an identity matrix.

Validation of EKF
The proposed system was validated in real-time. Since
ground truth is available in the simulator, we used syn-
thetic flight data of a drone.

Compared methods
Definitions of methods which were used in this valida-
tion are summarized here.

Gyro
“Gyro” denotes an estimation method integrating angular
velocity from a gyroscope.

Gyro+Acc
“Gyro+Acc” denotes an EKF-based estimation method
integrating angular velocity and linear acceleration from
IMU.

(15)Rot
xyz
(xk)

=





Cθk Cψk
Cθk Sψk

− Sθk
Sφk Sθk Cψk

− Cφk Sψk
Sφk Sθk Sψk

+ Cφk Cψk
Sφk Cθk

Cφk Sθk Cψk
+ Sφk Sψk

Cφk Sθk Sψk
− Sφk Cψk

Cφk Cθk





(16)R =





γ�0,0 �0,1 �0,2

�1,0 γ�1,1 �1,2

�2,0 �2,1 γ�2,2





(17)

x̂k = xk + K k(zk − h(xk)), P̂k = (I − K k Jhk)Pk

Jhk =
∂h

∂x

∣

∣

∣

∣

xk

, K k = Pk Jh
T
k (JhkPk Jh

T
k + Rk)

−1

Gyro+NDT
“Gyro+NDT” denotes NDT SLAM [4] using 32 layers of
LiDAR. Angular velocity from a gyroscope, linear veloc-
ity of ground truth and NDT output are integrated in the
EKF. Note that linear velocity of ground truth is available
because the environment is a simulator.

Gyro+Regression
“Gyro+Regression” denotes an EKF-based estimation
method integrating angular velocity from a gyroscope
and gravity vectors from the regression network (Fig. 6).
All outputs from the network are integrated in the EKF.

Gyro+MLE (ours)
“Gyro+MLE (ours)” denotes the proposed method
described in "EKF-based self-attitude estimstion
with DNN" section. The hyperparameters were set as
THβ = 8× 10−5 and γ = 1× 104 . They were empirically
determined based on the result in "Validation of DNN"
section.

Fig. 10  Proposed EKF architecture. Gyroscopic angular rates are integrated in the prediction process in the EKF. The DNN outputs are integrated in
the update process in the EKF

Fig. 11  Flight courses. In (a), a course in “Neighborhood” which is
a known environment for the DNN is shown. The drone flew for 5
rounds. It took about 22 minutes. In (b), a course in “SoccerField”
which is an unknown environment for the DNN is shown. The drone
flew for 3 rounds. It took about 6 minutes

Page 10 of 12Ozaki and Kuroda ﻿Robomech J (2021) 8:9

Experimental conditions
Flight data of a drone ware recorded in “Neighbor-
hood” and “SoccerField” of AirSim. “Neighborhood”
is the same environment where the DNN was trained.
An IMU and a camera are installed on a drone in the
simulator. A LiDAR with 32 layers is also used for
“Gyro+NDT”. The sampling frequency of the IMU, the
camera and LiDAR are approximately 100 Hz, 12 Hz
and 20 Hz, respectively. The camera’s horizontal FOV
is 70 deg. Virtual noise was add to the IMU’s 6-axis
data. It was randomly added following a normal dis-
tribution with a mean of 0 rad/s , 0 m/s2 and a stand-
ard deviation of 0.1 rad/s , 0.1 m/s2 , respectively. The

flight courses of “Neighborhood” and “SoccerField” are
shown in Fig. 11. A computer which has i7-6700 CPU

Fig. 12  Real-time attitude plotting. In (a), the result of the flight in “Neighborhood” is shown. In (b), the result of the flight in “SoccerField” is shown.

Table 11  MAE of estimated attitude during flight in known
environment

Roll [deg] Pitch [deg]

Gyro 14.524 12.562

Gyro+Acc 2.920 3.380

Gyro+NDT 7.456 6.516

Gyro+Regression 3.187 1.876

Gyro+MLE (ours) 2.869 1.821

Page 11 of 12Ozaki and Kuroda ﻿Robomech J (2021) 8:9 	

and GTX1080 GPU with 16 GB memory was used for
the estimation. The DNN inference computation takes
around 0.01–0.02 seconds with the computer. The pro-
posed method is not only for UAVs, but it needs to be
noted that this computer may be over-performance
for real UAVs. Therefore, testing with a general UAV’s
computer specification should be necessary when the
method is used on real UAVs, and it is not the focus of
this study.

Experimental results
The estimated attitudes are plotted in Fig. 12a. Table 11
shows MAE of the estimated attitudes in “Neighborhood”.
MAE of “Gyro+MLE (ours)” is smaller than ones of the
other methods. “Gyro” had large accumulative error.
That is natural because noise was added and the method
does not have any other observation. “Gyro+Acc” does
not have accumulative error. However it has error con-
stantly, since the acceleration values of the sensor contain
own acceleration of the robot. “Gyro+NDT” accumu-
lated error slower than “Gyro” did by using LiDAR, but it
could not remove the accumulation. “Gyro+Regression”
and “Gyro+MLE (ours)” corrected the accumulative
error by observing the estimated gravity. Comparing
“Gyro+Regression” and “Gyro+MLE (ours)”, filtering
out the DNN outputs with large β is found valid. With
“Gyro+MLE (ours)”, 31 % of the outputs is rejected by the
threshold in the flight.

MAE of the estimation in “SoccerField” is shown in
Table 12. “Gyro+Regression” and “Gyro+MLE (ours)”
suppressed accumulative error even in the environment
where the DNN was not trained. MAE of “Gyro+MLE
(ours)” is smaller than ones of the other methods. With
“Gyro+MLE (ours)”, more outputs (58 %) from the DNN
are filtered out by the threshold THβ in the unknown
environment (“SoccerField”) than in the known environ-
ment (“Neighborhood”). This can avoid observing out-
puts with high uncertainty. However, it leads chances
of correcting error less. In other words, the proposed
method can not correct error when the large variance is
continuing. To compensate this decrease of the chances,
the proposed method actually can integrates other

observations such as IMU’s acceleration, SLAM, and so
on in a future work. Whereas, in this experiment, the
proposed method integrates only angular rate and the
DNN outputs in order to make the validation simple.

Conclusions and future work
EKF-based self-attitude estimation with DNN learning
landscape information was proposed. The DNN estimates
direction of gravity from a single shot image. The network
outputs not only the gravity vector, but also a covariance
matrix. Training was done with synthetic data of AirSim,
and validation was done with both of the synthetic data
and real sensors’ data. In the validation, many samples with
large error are filtered out by judging variance values. It
means the proposed network expresses uncertainty of the
prediction by outputting covariance matrices. The out-
puts from the DNN and angular velocity from a gyroscope
are integrated in the EKF. The covariance matrix is used
adjusting process noise. Moreover, outputs with too large
variance are filtered out by a threshold. This EKF-based
proposed method was validated with flight data of a drone
in AirSim environments. In the experiments, the proposed
method suppressed accumulative error by using the DNN.

In a future work, wider variety of datasets including real
data are needed for the DNN to close the gap between the
results in known environments and in unknown environ-
ments. Simulator data can be used for pre-training of the
DNN before fine tuning with the real data. Only the roll
augmentation is applied in this paper because it is easy and
simple, but pitch augmentation by the homography trans-
formation should also be valid for fine-tuning with the
less real samples. Using other sensors or combining other
methods is another future work. The experiments in this
paper were done only with the daytime condition, but real
robots should work in day and night. Therefor the future
work needs to compensate the camera’s weak point for
night operations.

Acknowledgements
The authors are thankful for the generous support from the New Energy and
Industrial Technology Development Organization (NEDO) for this study. This
study was conducted under “Autonomous Robot Research Cluster” at Meiji
University.

Authors’ contributions
RO proposed the method described in this paper, implemented all the
programing, conducted all the experiments, and drafted the manuscript. YK
provided the inspiration for this study, provided advice, and checked and cor-
rected the manuscript. Both authors read and approved the final manuscript.

Funding
This study was supported by the New Energy and Industrial Technology
Development Organization (NEDO).

 Availability of data and materials
Dataset consisting of images and their corresponding gravity vectors. https​://githu​
b.com/ozaki​ryota​/datas​et_image​_to_gravi​ty. .https​://githu​b.com/ozaki​ryota​/
image​_to_gravi​ty. https​://githu​b.com/ozaki​ryota​/dnn_attit​ude_estim​ation​.

Table 12  MAE of estimated attitude during flight in unknown
environment

Roll [deg] Pitch [deg]

Gyro 6.424 4.679

Gyro+Acc 3.155 3.091

Gyro+NDT 4.067 2.646

Gyro+Regression 3.248 1.984

Gyro+MLE (ours) 2.869 1.785

https://github.com/ozakiryota/dataset_image_to_gravity.
https://github.com/ozakiryota/dataset_image_to_gravity.
https://github.com/ozakiryota/image_to_gravity.
https://github.com/ozakiryota/image_to_gravity.
https://github.com/ozakiryota/dnn_attitude_estimation.

Page 12 of 12Ozaki and Kuroda ﻿Robomech J (2021) 8:9

Competing interests
The authors declare that they have no competing interests.

Received: 8 September 2020 Accepted: 11 February 2021

References
	1.	 Vaganay J, Aldon MJ, Fournier A (1993) Mobile robot attitude estima-

tion by fusion of inertial data. In: Proceedings of 1993 IEEE International
Conference on Robotics and Automation (ICRA), pp. 277–282

	2.	 Thrun S, Burgard W, Fox D (2005) In: Probabilistic Robotics, pp. 309–336.
The MIT Press

	3.	 Rusinkiewicz S, Levoy M (2001) Efficient variants of the icp algorithm. In:
Proceedings of Third International Conference on 3-D Digital Imaging
and Modeling, pp. 145–152

	4.	 Biber P, er, WS (2003) The normal distributions transform: a new approach
to laser scan matching. In: Proceedings of 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)

	5.	 Engel J, Stueckler J, Cremers D (2014) Lsd-slam: Large-scale direct
monocular slam. In: Proceedings of European Conference on Computer
Vision (ECCV), pp. 834–849

	6.	 Mur-Artal R, Montiel JMM, Tardós JD (2015) Orb-slam: a versatile and
accurate monocular slam system. IEEE Transact Robotic 31(5):1147–1163

	7.	 Quddus MA, Ochieng WY, Noland RB (2007) Current map-matching
algorithms for transport applications: State-of-the art and future research
directions. Transportat Res Part C Emerg Technol 15(5):312–328

	8.	 Kim P, Coltin B, Kim HJ (2018) Linear rgb-d slam for planar environments.
In: Proceedings of European Conference on Computer Vision (ECCV), pp.
333–348

	9.	 Hwangbo M, Kanade T (2011) Visual-inertial uav attitude estimation
using urban scene regularities. In: Proceedings of 2011 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2451–2458

	10.	 do Monte Lima JPS, Uchiyama H, Taniguchi RI (2019) End-to-end learning
framework for imu-based 6-dof odometry. Sensors 19(17):3777

	11.	 Al-Sharman MK, Zweiri Y, Jaradat MAK, Al-Husari R, Gan D, Seneviratne LD
(2020) Deep-learning-based neural network training for state estimation
enhancement: application to attitude estimation. IEEE Transact Instru-
ment Measure 69(1):24–34

	12.	 Mérida-Floriano M, Caballero F, Acedo D, García-Morales D, Casares F,
Merino L (2019) Bioinspired direct visual estimation of attitude rates with
very low resolution images using deep networks. In: Proceedings of 2019
IEEE International Conference on Robotics and Automation (ICRA), pp.
5672–5678

	13.	 Shah S, Dey D, Lovett C, Kapoor A (2017) Airsim: High-fidelity visual
and physical simulation for autonomous vehicles. Field Serv Robotics
5:621–635

	14.	 Ellingson G, Wingate D, McLain T (2017) Deep visual gravity vector detec-
tion for unmanned aircraft attitude estimation. In: Proceedings of 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)

	15.	 Kalman RE (1960) A new approach to linear fi ltering and prediction prob-
lems. J Basic Eng 82:35–45

	16.	 Simonyan K, Zisserman A (2014) Very deep convolutional networks for
large-scale image recognition. In: arXiv Preprint, pp. 1409–1556

	17.	 Deng J, Dong W, Socher R, L. Li KL, Fei-Fei L (2009) Imagenet: a large-scale
hierarchical image database. In: Proceedings of 2009 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 248–255

	18.	 Nair V, Hinton GE (2010) Rectified linear units improve restricted boltz-
mann machines. Proceed ICML 2010:807–814

	19.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014)
Dropout: a simple way to prevent neural networks from overfitting. J
Mach Learn Res 15(1):1929–1958

	20.	 Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In:
Proceedings of the 3rd International Conference for Learning Representa-
tions (ICLR)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	EKF-based self-attitude estimation with DNN learning landscape information
	Abstract
	Introduction
	DNN estimating gravity vector
	Coordinate definition
	Dataset collection
	Data transformation and augmentation
	Image (input)
	Gravity vector (label)

	Network
	Loss function
	Optimization

	Validation of DNN
	Compared methods
	MLE (ours, all)
	MLE (ours, selected)
	Regression w L2 normalization
	Regression wo L2 normalization

	Training and validation
	Attitude estimation

	EKF-based self-attitude estimstion with DNN
	Prediction process
	Update process

	Validation of EKF
	Compared methods
	Gyro
	Gyro+Acc
	Gyro+NDT
	Gyro+Regression
	Gyro+MLE (ours)

	Experimental conditions
	Experimental results

	Conclusions and future work
	Acknowledgements
	References

