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Abstract— This paper presents DNN (deep neural network)-
based self-attitude estimation by learning landscape informa-
tion. The network predicts the gravity vector in the camera
frame. The input of the network is a camera image, the outputs
are a mean vector and a covariance matrix of the gravity. It is
trained and validated with a dataset of images and correspond
gravity vectors. The dataset is collected in a simulator. Using
a simulator breaks the limitation of amount of collecting data
with ground truth. The validation showed the network can
predict the gravity vector from only a single shot image. It also
showed the covariance matrix expresses the uncertainty of the
prediction.

I. INTRODUCTION

Estimating attitude of a robot is one of the classic prob-
lems of mobile robotics. Especially, real-time estimation is
required for real-time attitude control. The attitude is gener-
ally estimated with inertial sensors such as an accelerometer
and a gyroscope. However, mobile robots have their own
acceleration. Especially, on-road robots also receive pulses
from the ground. These need to be filtered out from a
accelerometer. On the other hand, integration of a gyroscope
has the problem of drift and bias. These disturbances worsen
the accuracy of the estimation. To complement each other,
these inertial data are fused, generally[1]. Nevertheless,
dealing the disturbances with only inertial sensors is quite
difficult.

To reduce the influence of these disturbances, many kinds
of SLAM (Simultaneous Localization And Mapping)[2] have
been proposed. SLAM with LiDAR matches point clouds by
ICP (iterative closest point)[3], NDT (normal distributions
transform)[4], and so on. Many visual SLAM with cameras
have also been proposed[5], [6]. SLAM often contains ac-
cumulative error since relative pose changes with error are
summed up. In order to correct the accumulative error, prior
information such as 3D maps is used[7]. These methods
correct the error by matching the prior information against
data from the sensor. However, they work only in environ-
ment which its map is available. Moreover, creating a map is
time-consuming and requires update. Some methods[8], [9]
estimate attitude under Manhattan world assumption. They
assume that planes and edges in an environment are orthog-
onal to each other. It helps achieving drift-free estimation. It
is difficult for this kind of methods to avoid being affected
by objects which do not satisfy assumption.

Deep learning has been used for attitude estimation in
recent years. In [10], IMU-based odometry by end-to-end
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learning have been proposed. In [11], a deep neural network
identifies the measurement’s noise characteristics of IMU. In
[12], a neural network estimates angular rates from sequen-
tial images. It was trained with synthetic and real images. The
large synthetic dataset was collected in AirSim[13] which
offers visually realistic graphics. In [14], a gravity vector is
directly estimated from a single shot image. This is based
on expectation that the network can learn edge information,
context information, and landscape information; for example,
most artificial buildings should be built vertically, the sky
should be seen when the camera orients upper, and so on. The
method does not depend time sequence since only a single
shot image is used to estimate attitude. It helps suppressing
drift, noise, and accumulative error. This method is the
most similar to our proposed method. However, this method
contains some problems. It cannot express uncertainty of the
prediction; for instance, the network outputs estimation even
when the camera is covered by objects, when less features are
captured, and so on. These outputs with large error worsen
estimation when a filter function such as Kalman filter[16]
combines some methods. Therefore they need to be rejected.

To address these issues above, this paper presents self-
attitude estimation with DNN which predicts a gravity vector
from a single shot image, where the outputs are mean and
covariance. The differences from the related work[14] are
noted below:

• A larger dataset is collected in our work by using a
simulator.

• Our network is trained with reliable ground truth while
the related work collects a dataset with hand carried
phone.

• Our network applies L2 normalization to the output
gravity vector while ReLU[15] is applied in the related
work.

• Our network outputs mean and covariance matrix while
the related work directly outputs the gravity vector.

The source code used in this paper for collecting the dataset
and for deep learning have been released in open repositories.

II. DNN-BASED SELF-ATTITUDE ESTIMATION BY
LEARNING LANDSCAPE INFORMATION

The proposed method makes a deep neural network learn
landscape information for estimating a gravity vector in a
camera frame. The gravity vector is expressed as mean and
covariance to consider uncertainty of the prediction.

A. Coordinate definition

A world frame is defined as a standard right-handed
coordinate system. A camera frame is defined as a right-
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Fig. 1: Screenshot of AirSim with coordinate description. An
IMU and a camera are equipped to the drone in the simulator.
A purpose of this work is estimating a gravity vector in the
camera frame from a front camera image.

handed coordinate system which is fixed on the camera pose.
They are shown in Fig.1.

B. Dataset collection

A dataset is collected in AirSim[13]. AirSim is a simulator
for drones, cars and more, built on Unreal Engine, which
provides visually realistic graphics. The dataset consists of
images and correspond gravity vectors ggg in the camera frame.
The camera pose and weather parameters are randomized,
and a image and a gravity vector are recorded at each pose.
The range of random Z is limited as [2 m, 3 m] in this work.
The ranges of random roll ϕ and pitch θ are limited as [-
30 deg, 30 deg], respectively. Fig.2 shows examples of the
dataset.

C. Data transformation and augmentation

A input data and a label data are transformed and are
augmented in each epoch of training.

1) Image (input): A image is randomly rotated for aug-
menting data. The rotation angle α is limited as [-10 deg,
10 deg]. The image is resized to 224× 224. RGB values
are normalized. In this work, this normalization is done
following mmmeeeaaannn = (0.5,0.5,0.5) and ssstttddd = (0.5,0.5,0.5).
Fig.3 shows an example of data augmentation.

2) Gravity vector (label): A gravity vector in the camera
frame is rotated according to α . Since the network does not
need to learn norm of the gravity, L2 normalization is also
applied to the vector in order to make training efficient.

gggtrans =
RRR(α)ggg
|RRR(α)ggg|

, RRR(α) =

1 0 0
0 cos(−α) −sin(−α)
0 sin(−α) cos(−α)


(1)

D. Network

The proposed deep neural network is shown in Fig.4. It
consists of CNN (convolutional neural network) layers and
FC (fully connected) layers. Its input is a resized image,
and its outputs are a mean vector of a gravity vector and

Fig. 2: Examples of datasets. The dataset consists of images
and correspond gravity vectors ggg[m/s2] in the camera frame.
These data are collected in “Neighborhood” of AirSim. The
camera pose and weather parameters are randomized for
creating a dataset. Road in the lower right image is covered
by snow.

Fig. 3: Example of a transformed image. An image is
randomly rotated according to α . This example shows an
image when α = 10deg. It is also resized, and is normalized.

a covariance matrix. Technically, the output of FC layers
is (µgx ,µgy ,µgz ,L0, · · · ,L5), and the mean vector µµµ and the
covariance matrix ΣΣΣ are computed as Eq.2, 3, respectively.
Since, the lower-triangular matrix LLL is required to have
positive-valued diagonal entries, an exponential function is
applied to the diagonal elements.

µµµ =
(µgx ,µgy ,µgz)

T

|(µgx ,µgy ,µgz)
T|

(2)

ΣΣΣ = LLLLLLT, LLL =

exp(L0) 0 0
L1 exp(L2) 0
L3 L4 exp(L5)

 (3)

It is expected that the CNN layers lean extracting features
such as edges, and FC layers learn landscape information.
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Feature module of VGG16[17] pre-trained on ImageNet[18]
is adopted as the CNN layers of the proposed method.
All layers, except the final output layer, use the ReLU
function[15] as activation function. All FC layers, except the
final output layer, use the 10% Dropout[19].

E. Loss function

Assuming that the estimation follows multivariate normal
distribution, probability density is computed as Eq.4.

P(xxx|µµµ,ΣΣΣ) =
exp(− 1

2 (xxx−µµµ)TΣ−1(xxx−µµµ))√
(2π)k|ΣΣΣ|

, k = rank(ΣΣΣ)

(4)
where k denotes dimensions of variables, i.e. k = 3 in the pro-
posed method. To make the network learn the probabilistic
model, it is trained maximizing P(xxxlabel|µµµ,ΣΣΣ), where xxxlabel (=
gggtrans) is a label of the dataset. The total probability density
Ptotal of a dataset Dlabel = [xxxlabel0 , · · · ,xxxlabeli , · · · ,xxxlabeln ] is
computed by multiplying as Eq.5.

Ptotal =
n

∏
i=0

P(xxxlabeli |µµµ i,ΣΣΣi) (5)

Since the natural logarithm is a monotonically increasing
function, maximizing Ptotal can be simplified by taking the
natural logarithm. This avoids the value becoming too small
by multiplying, and decreases computational cost. Here,
Plogtotal denotes a total value of log-probability.

Plogtotal =
n

∑
i=0

lnP(xxxlabeli |µµµ i,ΣΣΣi) (6)

Moreover, maximizing Plogtotal is equivalent to minimizing
−Plogtotal . Finally, the loss function of the proposed method
is Eq.7.

f(www) =−Plogtotal (7)

where www denotes parameters of the network. The network
minimizes the loss by updating www.

F. Optimization

Adaptative Moment Estimation (Adam)[20] is used to op-
timize the parameters. The learning rates are set as lrCNN =
0.00001, lrFC = 0.0001, where lrCNN is a value for CNN
layers, lrFC is a value for FC layers.

III. VALIDATION

A. Comparative methods

Definition of methods which were used in this validation
are summarized here.

1) MLE (ours, all): “MLE (ours, all)” denotes the pro-
posed method described in Sec.II. MLE is short for Maxi-
mum Likelihood Estimation.

TABLE I: Loss after 200 epochs.
Train Test

MLE (ours) [m/s2] -6.4991 -5.7436
Regression w/ L2 normalization [m2/s4] 0.0011 0.0031

Regression w/o L2 normalization [m2/s4] 0.6588 0.4916

2) MLE (ours, selected): “MLE (ours, selected)” denotes
the method uses the exactly same network and the same
parameters as “MLE (ours, all)” does, but only samples
which output small variance are used for validation of
attitude estimation. It means samples with large variance
are filtered out as outliers. Assuming β in Eq.8 expresses
uncertainty of the prediction, samples with small variance
are selected with a threshold THβ . In this validation, the
threshold is set as THβ = 1

n ∑n
i=0 βi, where n is a number of

samples in the testing dataset.

β =
√

Σ0,0 ×
√

Σ1,1 ×
√

Σ2,2, ΣΣΣ =

Σ0,0 Σ0,1 Σ0,2
Σ1,0 Σ1,1 Σ1,2
Σ2,0 Σ2,1 Σ2,2


(8)

3) Regression w/ L2 normalization: “Regression w/ L2
normalization” denotes the network which the final FC layer
is difference from “MLE (ours)”. It outputs a 3d vector
without covariance. It is a similar architecture as [14]. L2
normalization is applied to the final layer while ReLU is
applied in [14]. Mean square error (MSE) between labels
and outputs is used as a loss function.

4) Regression w/o L2 normalization: “Regression w/ L2
normalization” denotes the regression network without L2
normalization. It is also require to learn norm of the gravity
vector, i.e. approximately 9.8 m/s2, in order to minimize the
loss. This information is not required to estimate attitude ϕ ,
θ .

B. Train and validation

The network was trained with 10000 samples with a batch
size of 200 samples for 200 epochs. Another 1000 samples
were used for test. They were collected in “Neighborhood”
of AirSim. The reason for the simulation layout is because it
is a large enough environment with buildings. The training
dataset and the test dataset were not mixed.

Loss values during training are plotted in Fig.5. The
regression models converged much faster than the MLE
model did. The regression model with L2 normalization
converged a bit faster than the regression model without L2
normalization did. Table I shows loss values after 200 epoch
training. It is noted that gradient was not computed with the
test dataset. It is also noted a loss function of the MLE model
and one of the regression models are difference.

C. Attitude estimation

Roll ϕ and pitch θ of the camera pose in the gravitational
coordinate are estimated by using µµµ .

ϕ = tan−1 µgy

µgz

, θ = tan−1 −µgx√
µ2

gy +µ2
gz

(9)
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Fig. 4: Network architecture. It consists of CNN layers and FC layers. The input data is a resized image, and the output data
are a mean vector and a covariance matrix. They are computed with an output from the final layer as Eq.2, 3, respectively.
Log-probability of multivariate normal distribution is used as a loss function of this model.

(a) MLE (ours)

(b) Regression w/ L2 normaliza-
tion

(c) Regression w/o L2 normal-
ization

Fig. 5: Loss plotting. It is noted a loss functions of the
MLE model and one of the regression models are difference.
Therefore, their values can not be simply compared.

Mean absolute error (MAE) of the estimation of the valida-
tion dataset is shown in Table II. Variance of the estimated
attitude error is shown in Table III. Both of the error and
the variance of “MLE (ours, selected)” are smaller than the
others. 715 samples which has β <THβ = 0.00008814m3/s6

were selected from 1000 validation samples in “MLE (ours,
selected)”.

Comparing “MLE (ours, all)” and “MLE (ours, selected)”,
filtering with THβ is valid, which means the network ex-
presses uncertainty by outputting a covariance matrix. In
order to see this, the samples are sorted in Fig.6. In Fig.6a,
top 50 samples are shown in descending order of the error
in “MLE (ours)”. In Fig.6b, the top 50 samples are shown in
descending order of β in “MLE (ours)”. In Fig.6a, most of
the sample images with large error are covered by objects,
and the images are dark with much less landscape informa-

TABLE II: MAE of estimated attitude.
Roll [deg] Pitch [deg]

MLE (ours, all) 2.620 2.277
MLE (ours, selected) 1.836 1.467

Regression w/ L2 normalization 2.727 2.525
Regression w/o L2 normalization 2.766 2.366

TABLE III: Variance of estimated attitude error.
Roll [deg2] Pitch [deg2]

MLE (ours, all) 23.139 18.348
MLE (ours, selected) 9.657 4.553

Regression w/ L2 normalization 25.161 21.996
Regression w/o L2 normalization 21.668 18.213

tion. It implies estimating gravity direction with much less
landscape information is difficult for the DNN, just like for
human. There is no way to detect them by the regression
model. 21 samples of the top 50 samples are mutual of both
groups. Correlation between error and β are not complete,
but many samples with large error were detected by sorting
samples with β . A good example with large β and one
with small β are shown in Fig.7, respectively. Obviously, the
sample in Fig.7a does not have enough landscape information
to estimate the gravity vector, and the proposed network
expresses the uncertainty with large β .

Comparing “Regression w/ L2 normalization” and “Re-
gression w/o L2 normalization”, L2 normalization does not
contribute to the accuracy, although the one with L2 nor-
malization converged a bit faster than the one without L2
normalization did.

IV. CONCLUSIONS AND FUTURE WORK

DNN-based self-attitude estimation by learning landscape
information was proposed. A gravity vector is estimated
from a single shot image. The network outputs not only
the gravity vector, but also a covariance matrix. Training
and validation were done with a dataset collected with
AirSim. In the validation, many samples with large error are
filtered out by judging variance values. It means the proposed
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(a) Top 50 samples with large error in “MLE (ours)” (b) Top 50 samples with large β in “MLE (ours)”

Fig. 6: Sorted samples. A number above each image is a index of a sample. In (a), top 50 samples are sorted in descending
order of the error in “MLE (ours)”. Error of sample#608 in the regression model is ϕerror =−35.34deg,θerror =−25.74deg.
Error of sample#352 is ϕerror = 2.80deg,θerror =−12.93deg. In (b), top 50 samples are sorted in descending order of β in
“MLE (ours)”. Mutual samples of the both groups are marked with red rectangles.

(a) Large β example (b) Small β example

Fig. 7: An example with large β and an example with small
β . Obviously, it is hard to estimate the gravity direction from
the sample(a). The proposed network expresses uncertainty
of the prediction of the sample(a) by outputting large covari-
ance.

network expresses uncertainty of the prediction by outputting
a covariance matrix.

In future work, this covariance matrix may be used
when the prediction is observed in Kalman filter and so
on. Training and testing with datasets collected in other
environments is also future work. To have good result in
unknown environments, wider variety of datasets are needed.
Applying the proposed method to real data is another future
work. Simulator data can be used for pre-training before fine
tuning with the real data.

APPENDIX

• Source code for deep learning. It is implemented using
Python and PyTorch API.
https://github.com/ozakiryota/image_to_gravity/

tree/486e2eee7e0fa8a928b45ba06c3a83cf7519c040

• Source code for collecting dataset. It is implemented
using C++ and AirSim API.
https://github.com/ozakiryota/airsim_controller
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